from timeit import default_timer as timer
from collections import defaultdict
from BBalpha_dropout import *

if len(sys.argv) != 3:
    print("Call this program like this:\n"
          "    ./mnist-mlp-train.py alpha run\n"
          "    e.g. ./mnist-mlp-train.py 0.5 1")
    exit()

# extract command line arguments
alpha = float(sys.argv[1])
run = sys.argv[2]

# get dataset
train, validation, _ = load_mnist(flatten=True)

# constants
nb_train = train[0].shape[0]
nb_val = validation[0].shape[0]
input_dim = train[0].shape[1]
nb_classes = train[1].shape[1]

batch_size = 128
nb_layers = 2
nb_units = 100
p = 0.5
wd = 1e-6

K_mc = 10
Exemple #2
0
import sys
import os

if len(sys.argv) != 3:
    print("Call this program like this:\n"
          "    ./mnist-cnn-train.py alpha run\n"
          "    e.g. ./mnist-cnn-train.py 0.5 1"
         )
    exit()

# extract command line arguments
alpha = float(sys.argv[1])
run = sys.argv[2]

# get dataset
train, validation, _ = load_mnist(flatten=False, channels_first=True)

# constants
assert train[0].shape[2] == train[0].shape[3], 'Input image not square'
input_size = train[0].shape[2]
in_channels = train[0].shape[1]
nb_train = train[0].shape[0]
nb_val = validation[0].shape[0]
input_dim = train[0].shape[1]
nb_classes = train[1].shape[1]

batch_size = 128
val_batch_size = nb_val
# nb_layers = 2
nb_units = 100
p = 0.5
Exemple #3
0
if len(sys.argv) != 3:
    print("Call this program like this:\n"
          "    ./cnn-train.py dataset run\n"
          "    e.g. ./cnn-train.py mnist 1\n"
          "Dataset is either ['mnist', 'cifar10', 'svhn']"
         )
    exit()

# extract command line arguments
dataset = sys.argv[1]
run = sys.argv[2]

# get dataset
if dataset == 'mnist':
    train, validation, _ = load_dataset.load_mnist(flatten=False,
                                                   channels_first=False)
elif dataset == 'cifar10':
    train, validation, _ = load_dataset.load_cifar10(channels_first=False)
elif dataset == 'svhn':
    train, validation, _ = load_dataset.load_svhn(channels_first=False)
else:
    print("Unrecognized dataset, use 'mnist', 'cifar10', or 'svhn'")
    print("Exiting...")
    exit()

# otherwise TF grabs all available gpu memory
if not hasattr(K, "tf"):
    raise RuntimeError("This code requires keras to be configured"
                       " to use the TensorFlow backend.")

config = tf.ConfigProto()