Exemple #1
0
def getSkimmedEvents(files):

    totalInitialEvents = 0
    for file in files:
        skimHist = get_histogram_from_file( pathToSkimHist, file )
        firstBinContent = list(skimHist.y())[0]
        totalInitialEvents += firstBinContent

    return totalInitialEvents
def makePurityStabilityPlots(input_file, histogram, bin_edges, channel, variable, isVisiblePhaseSpace):
    global output_folder, output_formats
 
    hist = get_histogram_from_file( histogram, input_file )
    print "bin edges contents   : ", bin_edges
    new_hist = rebin_2d( hist, bin_edges, bin_edges ).Clone()

    # get_bin_content = hist.ProjectionX().GetBinContent
    purities = calculate_purities( new_hist.Clone() )
    stabilities = calculate_stabilities( new_hist.Clone() )
    # n_events = [int( get_bin_content( i ) ) for i in range( 1, len( bin_edges ) )]
    print "purities contents    : ", purities
    print "stabilities contents : ", stabilities

    hist_stability = value_tuplelist_to_hist(stabilities, bin_edges)
    hist_purity = value_tuplelist_to_hist(purities, bin_edges)

    hist_purity.color = 'red'
    hist_stability.color = 'blue'

    hist_stability.linewidth = 4
    hist_purity.linewidth = 4

    x_limits = [bin_edges[0], bin_edges[-1]]
    y_limits = [0,1]
    plt.figure( figsize = ( 20, 16 ), dpi = 200, facecolor = 'white' )

    ax0 = plt.axes()
    ax0.minorticks_on()
#     ax0.grid( True, 'major', linewidth = 2 )
#     ax0.grid( True, 'minor' )
    plt.tick_params( **CMS.axis_label_major )
    plt.tick_params( **CMS.axis_label_minor )
    ax0.xaxis.labelpad = 12
    ax0.yaxis.labelpad = 12
    rplt.hist( hist_stability , stacked=False, axes = ax0, cmap = my_cmap, vmin = 1, label = 'Stability' )
    rplt.hist( hist_purity, stacked=False, axes = ax0, cmap = my_cmap, vmin = 1, label = 'Purity' )

    ax0.set_xlim( x_limits )
    ax0.set_ylim( y_limits )

    plt.tick_params( **CMS.axis_label_major )
    plt.tick_params( **CMS.axis_label_minor )

    x_title = '$' + variables_latex[variable] + '$ [GeV]'
    plt.xlabel( x_title, CMS.x_axis_title )

    leg = plt.legend(loc=4,prop={'size':40})

    plt.tight_layout()

    plt.savefig('test.pdf')
    save_as_name = 'purityStability_'+channel + '_' + variable + '_' + str(options.CoM) + 'TeV'
    for output_format in output_formats:
        plt.savefig( output_folder + save_as_name + '.' + output_format )
def make_scatter_plot(input_file, histogram, bin_edges, channel, variable,
                      title):
    global output_folder, output_formats, options
    scatter_plot = get_histogram_from_file(histogram, input_file)
    #     scatter_plot.Rebin2D( 5, 5 )

    x_limits = [bin_edges[variable][0], bin_edges[variable][-1]]
    y_limits = x_limits

    x_title = 'Reconstructed $' + variables_latex[variable] + '$ [GeV]'
    y_title = 'Generated $' + variables_latex[variable] + '$ [GeV]'
    save_as_name = channel + '_' + variable + '_' + str(options.CoM) + 'TeV'

    plt.figure(figsize=(20, 16), dpi=200, facecolor='white')

    ax0 = plt.axes()
    ax0.minorticks_on()
    #     ax0.grid( True, 'major', linewidth = 2 )
    #     ax0.grid( True, 'minor' )
    plt.tick_params(**CMS.axis_label_major)
    plt.tick_params(**CMS.axis_label_minor)
    ax0.xaxis.labelpad = 12
    ax0.yaxis.labelpad = 12
    im = rplt.imshow(scatter_plot, axes=ax0, cmap=my_cmap, vmin=0.001)
    colorbar = plt.colorbar(im)
    colorbar.ax.tick_params(**CMS.axis_label_major)

    # draw lines at bin edges values
    for edge in bin_edges[variable]:
        # do not inclue first and last values
        if (edge != bin_edges[variable][0]) and (edge !=
                                                 bin_edges[variable][-1]):
            plt.axvline(x=edge, color='red', linewidth=4, alpha=0.5)
            plt.axhline(y=edge, color='red', linewidth=4, alpha=0.5)

    ax0.set_xlim(x_limits)
    ax0.set_ylim(y_limits)

    plt.tick_params(**CMS.axis_label_major)
    plt.tick_params(**CMS.axis_label_minor)

    plt.xlabel(x_title, CMS.x_axis_title)
    plt.ylabel(y_title, CMS.y_axis_title)
    plt.title(title, CMS.title)

    plt.tight_layout()

    for output_format in output_formats:
        plt.savefig(output_folder + save_as_name + '.' + output_format)
Exemple #4
0
    def __set_unfolding_histograms__( self ):
        # at the moment only one file is supported for the unfolding input
        files = set( [self.truth['file'],
                     self.gen_vs_reco['file'],
                     self.measured['file']]
                    )
        if len( files ) > 1:
            print "Currently not supported to have different files for truth, gen_vs_reco and measured"
            sys.exit()
            
        input_file = files.pop()

        visiblePS = False
        if self.phaseSpace == 'VisiblePS':
            visiblePS = True

        t, m, r, f = get_unfold_histogram_tuple( File(input_file),
                                              self.variable,
                                              self.channel,
                                              centre_of_mass = self.centre_of_mass_energy,
                                              ttbar_xsection=self.measurement_config.ttbar_xsection,
                                              luminosity=self.measurement_config.luminosity,
                                              load_fakes = True,
                                              visiblePS = visiblePS
                                            )
        self.h_truth = asrootpy ( t )
        self.h_response = asrootpy ( r )
        self.h_measured = asrootpy ( m )
        self.h_fakes = asrootpy ( f )
        
        data_file = self.data['file']
        if data_file.endswith('.root'):
            self.h_data = get_histogram_from_file(self.data['histogram'], self.data['file'])
        elif data_file.endswith('.json') or data_file.endswith('.txt'):
            data_key = self.data['histogram']
            # assume configured bin edges
            edges = []
            edges = reco_bin_edges_vis[self.variable]

            json_input = read_data_from_JSON(data_file)

            if data_key == "": # JSON file == histogram
                self.h_data = value_error_tuplelist_to_hist(json_input, edges)
            else:
                self.h_data = value_error_tuplelist_to_hist(json_input[data_key], edges)
        else:
            print 'Unkown file extension', data_file.split('.')[-1]
def make_scatter_plot( input_file, histogram, channel, variable, title ):
    global output_folder, output_formats, options
    scatter_plot = get_histogram_from_file( histogram, input_file )
#     scatter_plot.Rebin2D( 5, 5 )

    x_limits = [0, bin_edges[variable][-1]]
    y_limits = x_limits

    x_title = 'Reconstructed $' + variables_latex[variable] + '$ [GeV]'
    y_title = 'Generated $' + variables_latex[variable] + '$ [GeV]'
    save_as_name = channel + '_' + variable + '_' + str(options.CoM) + 'TeV'

    plt.figure( figsize = ( 20, 16 ), dpi = 200, facecolor = 'white' )

    ax0 = plt.axes()
    ax0.minorticks_on()
#     ax0.grid( True, 'major', linewidth = 2 )
#     ax0.grid( True, 'minor' )
    plt.tick_params( **CMS.axis_label_major )
    plt.tick_params( **CMS.axis_label_minor )
    ax0.xaxis.labelpad = 12
    ax0.yaxis.labelpad = 12
    im = rplt.imshow( scatter_plot, axes = ax0, cmap = my_cmap, vmin = 1 )
    colorbar = plt.colorbar( im )
    colorbar.ax.tick_params( **CMS.axis_label_major )

    # draw lines at bin edges values
    for edge in bin_edges[variable]:
        # do not inclue first and last values
        if ( edge != bin_edges[variable][0] ) and ( edge != bin_edges[variable][-1] ):
            plt.axvline( x = edge, color = 'red', linewidth = 4, alpha = 0.5 )
            plt.axhline( y = edge, color = 'red', linewidth = 4, alpha = 0.5 )

    ax0.set_xlim( x_limits )
    ax0.set_ylim( y_limits )

    plt.tick_params( **CMS.axis_label_major )
    plt.tick_params( **CMS.axis_label_minor )

    plt.xlabel( x_title, CMS.x_axis_title )
    plt.ylabel( y_title, CMS.y_axis_title )
    plt.title( title, CMS.title )

    plt.tight_layout()
    
    for output_format in output_formats:
        plt.savefig( output_folder + save_as_name + '.' + output_format )
    def __set_unfolding_histograms__(self):
        # at the moment only one file is supported for the unfolding input
        files = set([
            self.truth['file'], self.gen_vs_reco['file'], self.measured['file']
        ])
        if len(files) > 1:
            print "Currently not supported to have different files for truth, gen_vs_reco and measured"
            sys.exit()

        input_file = files.pop()
        t, m, r, _ = get_unfold_histogram_tuple(
            File(input_file),
            self.variable,
            self.channel,
            centre_of_mass=self.centre_of_mass_energy,
            ttbar_xsection=self.measurement_config.ttbar_xsection,
            luminosity=self.measurement_config.luminosity,
        )
        self.h_truth = t
        self.h_response = r
        self.h_measured = m

        data_file = self.data['file']
        if data_file.endswith('.root'):
            self.h_data = get_histogram_from_file(self.data['histogram'],
                                                  self.data['file'])
        elif data_file.endswith('.json') or data_file.endswith('.txt'):
            data_key = self.data['histogram']
            # assume configured bin edges
            edges = []
            if self.phaseSpace == 'FullPS':
                edges = bin_edges[self.variable]
            elif self.phaseSpace == 'VisiblePS':
                edges = bin_edges_vis[self.variable]
            json_input = read_data_from_JSON(data_file)
            if data_key == "":  # JSON file == histogram
                self.h_data = value_error_tuplelist_to_hist(json_input, edges)
            else:
                self.h_data = value_error_tuplelist_to_hist(
                    json_input[data_key], edges)
        else:
            print 'Unkown file extension', data_file.split('.')[-1]
def makePurityStabilityPlots(input_file, histogram, bin_edges, channel,
                             variable, isVisiblePhaseSpace):
    global output_folder, output_formats

    hist = get_histogram_from_file(histogram, input_file)

    # get_bin_content = hist.ProjectionX().GetBinContent
    purities = calculate_purities(hist.Clone())
    stabilities = calculate_stabilities(hist.Clone())
    # n_events = [int( get_bin_content( i ) ) for i in range( 1, len( bin_edges ) )]

    hist_stability = value_tuplelist_to_hist(stabilities, bin_edges)
    hist_purity = value_tuplelist_to_hist(purities, bin_edges)

    hist_purity.color = 'red'
    hist_stability.color = 'blue'

    hist_stability.linewidth = 4
    hist_purity.linewidth = 4

    x_limits = [bin_edges[0], bin_edges[-1]]
    y_limits = [0, 1]
    plt.figure(figsize=(20, 16), dpi=200, facecolor='white')

    ax0 = plt.axes()
    ax0.minorticks_on()
    #     ax0.grid( True, 'major', linewidth = 2 )
    #     ax0.grid( True, 'minor' )
    plt.tick_params(**CMS.axis_label_major)
    plt.tick_params(**CMS.axis_label_minor)
    ax0.xaxis.labelpad = 12
    ax0.yaxis.labelpad = 12
    rplt.hist(hist_stability,
              stacked=False,
              axes=ax0,
              cmap=my_cmap,
              vmin=1,
              label='Stability')
    rplt.hist(hist_purity,
              stacked=False,
              axes=ax0,
              cmap=my_cmap,
              vmin=1,
              label='Purity')

    ax0.set_xlim(x_limits)
    ax0.set_ylim(y_limits)

    plt.tick_params(**CMS.axis_label_major)
    plt.tick_params(**CMS.axis_label_minor)

    x_title = '$' + variables_latex[variable] + '$ [GeV]'
    plt.xlabel(x_title, CMS.x_axis_title)

    leg = plt.legend(loc=4, prop={'size': 40})

    plt.tight_layout()

    plt.savefig('test.pdf')
    save_as_name = 'purityStability_' + channel + '_' + variable + '_' + str(
        options.CoM) + 'TeV'
    for output_format in output_formats:
        plt.savefig(output_folder + save_as_name + '.' + output_format)