Exemple #1
0
def load_parameters_with_filename(filepath):
    f = open(filepath, 'r')
    _ = f.readline()
    settings = arg.processCommandLineArguments(f.readline().strip().split(" "),
                                               None)
    f.close()
    return settings[0]
Exemple #2
0
def load_from_pickle(f):
    """
    Reads models from pickle with settings as header.
    Settings are pre-populated with default values from tools.arguments.
    """
    # Skip deprecated first line
    _ = f.readline()
    settings = arg.processCommandLineArguments(f.readline().strip().split(" "),
                                               None)

    try:
        savedVars = pickle.load(f)
    except IndexError:
        return False

    f.close()

    return dict(savedVars), settings[0]
        score_types['Inpt.size %d' % size] = 'Score by input size = %d:' % size
    for symbolId in range(20):
        score_types['Symbol %d' % symbolId] = 'Symbol %d:' % symbolId
    for offset in range(20):
        score_types['X offset %d' % offset] = 'X offset = %d:' % offset
    for trueSize in range(20):
        for nrCorrect in range(20):
            score_types['T %d C %d' %
                        (trueSize,
                         nrCorrect)] = 'Prediction size %d nr correct %d' % (
                             trueSize, nrCorrect)
    trackerreporter.init('http://rjbruin.nl/experimenttracker/api/', api_key)

    cmdargs = sys.argv[1:]
    # Check for experiment settings file argument and obtain new arguments
    allparameters = processCommandLineArguments(cmdargs)
    newparameters = []
    if (allparameters[0]['debug']):
        newparameters = allparameters
    else:
        for i in range(len(allparameters)):
            iterative = False
            # Ask for experiment base name
            basename = raw_input("Experiment %d name (%s): " %
                                 (i + 1, allparameters[i]['name']))
            if (' ' in basename):
                raise ValueError(
                    "Experiment name cannot contain whitespace! Offending name: \"%s\""
                    % basename)
            allparameters[i]['basename'] = allparameters[i]['name']
            if (basename != ''):
Exemple #4
0
def writeToVerbose(verboseOutputter, s):
    f = verboseOutputter['f']()
    f.write(s + '\n')
    f.close()


if (__name__ == '__main__'):
    np.set_printoptions(precision=3, threshold=10000000)

    # Specific settings - default name is time of experiment
    name = time.strftime("%d-%m-%Y_%H-%M-%S")
    saveModels = True

    # Process parameters
    parameters = processCommandLineArguments(sys.argv[1:])

    # Set up extreme verbose output
    # Can always be called but will not do anything if not needed
    if (parameters['extreme_verbose']):
        if (parameters['tensorflow']):
            raise ValueError(
                "Feature extreme_verbose = True not supported in combination with tensorflow = True!"
            )
        verboseOutputter = {
            'name': './verbose_output/%s.debug' % name
        }
        verboseOutputter['f'] = lambda: open(verboseOutputter['name'], 'a')
        verboseOutputter['write'] = lambda s: writeToVerbose(
            verboseOutputter, s)
    else:
@author: Robert-Jan
'''

from tools.arguments import processCommandLineArguments
from tools.model import constructModels

if __name__ == '__main__':
    max_length = 17
    intervention_range = 12
    base_offset = 5

    # Process parameters
    cmd = "--dataset ./data/subsystems_deep_simple_topcause --finish_subsystems True"
    #cmd += " --max_training_size 1000";
    parameters = processCommandLineArguments(cmd.split(" "))

    # Construct models
    datasets, model = constructModels(parameters, 0, {})
    dataset = datasets[0]

    validCountsPerInterventionLocation = {}
    for interventionLocation in range(
            max_length - intervention_range - base_offset,
            max_length - base_offset):
        validCountsPerInterventionLocation[interventionLocation] = 0

    result = dataset.expressionsByPrefix.get_next([])
    while (result != False):
        expression, path = result
        print(" / ".join([expression]))
Exemple #6
0
    def testExists(self):
        params = [
            '--finish_subsystems', 'True', '--only_cause_expression', '1',
            '--dataset', '../data/subsystems_shallow_simple_topcause',
            "--sample_testing_size", "10000", "--n_max_digits", "17",
            "--intervention_base_offset", "0", "--intervention_range", "17",
            "--nesterov_optimizer", "True", "--decoder", "True",
            "--learning_rate", "0.005", "--hidden_dim", "256"
        ]
        params = processCommandLineArguments(params)
        datasets, _ = constructModels(params, 1234, {})
        dataset = datasets[0]

        storage = dataset.expressionsByPrefix

        expressions = [
            "(3-9)*(0-3)=18", "(4-7)+(6*5)=27", "(0/6)+(2*8)=16",
            "(1-4)+(3+6)=6", "(6+0)+(0-1)=5"
        ]
        for i, expr in enumerate(expressions):
            self.assertEqual(
                storage.exists(expr), True,
                "(exists) Failing exists lookup for sample %d" % i)
            _, _, _, _, branch = storage.get(expr[:4], alsoGetStructure=True)
            closest, _, _, _ = branch.get_closest(expr[4:])
            self.assertNotEqual(
                closest, False,
                "(exists) Branch-based lookup failed with False for sample %d: %s"
                % (i, closest))
            self.assertEqual(
                closest, expr,
                "(exists) Failing branch-based lookup for sample %d: %s" %
                (i, closest))

            # Apply mutations and test if both methods get the same new label
            for n in range(20):
                intervention_location = np.random.randint(0, len(expr))
                new_symbol = np.random.randint(dataset.data_dim)
                new_expression = expr[:intervention_location] + dataset.findSymbol[
                    new_symbol] + expr[intervention_location + 1:]
                print("Old: %s\tNew: %s" % (expr, new_expression))

                _, _, valids, _, branch = storage.get(
                    new_expression[:intervention_location + 1],
                    alsoGetStructure=True)
                if (new_expression not in valids and len(valids) > 0):
                    # Old method: compare all
                    profiler.start('old')
                    nearest = -1
                    nearest_score = 100000
                    for j, nexpr in enumerate(valids):
                        score = string_difference(new_expression, nexpr)
                        if (score < nearest_score):
                            nearest = j
                            nearest_score = score
                    closest_old = valids[nearest]
                    profiler.stop('old')

                    profiler.start('new')
                    # New method:
                    closest_new, _, _, _ = branch.get_closest(
                        new_expression[intervention_location + 1:])
                    profiler.stop('new')

                    if (closest_old != closest_new):
                        print(
                            "(exists) Intervened closest do not match for sample %d: loc %d / orig %s / int %s / old %s / new %s"
                            % (i, intervention_location, expr, new_expression,
                               closest_old, closest_new))


#                     self.assertEqual(closest_old, closest_new,
#                                      "(exists) Intervened closest do not match for sample %d: loc %d / orig %s / int %s / old %s / new %s" %
#                                         (i, intervention_location, expr, new_expression, closest_old, closest_new));

        profiler.profile()