Exemple #1
0
def rrt_connect(q1, q2, distance, sample, extend, collision, iterations=RRT_ITERATIONS):
  if collision(q1) or collision(q2): return None
  root1, root2 = TreeNode(q1), TreeNode(q2)
  nodes1, nodes2 = [root1], [root2]
  for i in irange(iterations):
    if len(nodes1) > len(nodes2):
      nodes1, nodes2 = nodes2, nodes1
    s = sample()

    last1 = argmin(lambda n: distance(n.config, s), nodes1)
    for q in extend(last1.config, s):
      if collision(q): break
      last1 = TreeNode(q, parent=last1)
      nodes1.append(last1)

    last2 = argmin(lambda n: distance(n.config, last1.config), nodes2)
    for q in extend(last2.config, last1.config):
      if collision(q): break
      last2 = TreeNode(q, parent=last2)
      nodes2.append(last2)
    else:
      path1, path2 = last1.retrace(), last2.retrace()
      if path1[0] != root1:
        path1, path2 = path2, path1
      return configs(path1[:-1] + path2[::-1])
  return None
Exemple #2
0
def extract_relaxed_plan(goal, operator_costs, variable_costs, tree):
  operator_layers = get_layers(operator_costs)
  num_goal_layers = operator_costs[goal].level + 1
  goals = [{var: set() for var in variable_costs.keys()} for _ in range(num_goal_layers)]
  plan = [set() for _ in range(num_goal_layers - 1)]
  marked = [{var: set() for var in variable_costs.keys()} for _ in range(num_goal_layers)]
  easiest_fn = lambda o: EASIEST_HEURISTIC(o, operator_costs, variable_costs, goals, get_conditions(o, tree))

  for var, value in goal.conditions.iteritems():
    goals[variable_costs[var][value].level][var].add(value)

  for level in reversed(range(1, num_goal_layers)):
    for var, value in LAYER_ORDER(variable_costs, goals[level]):
      if value in marked[level][var]: continue
      if ALL_BACK_POINTERS:
        easiest_operator = argmin(easiest_fn, (o for o, p in operator_costs.iteritems()
                                               if p.level < level and var in o.effects and o.effects[var] == value))
      else:
        easiest_operator = argmin(easiest_fn, (o for o in operator_layers[level-1]
                                               if var in o.effects and o.effects[var] == value)) # NOTE - compares cost and level
      plan[level-1].add(easiest_operator)
      for var2, value2 in get_conditions(easiest_operator, tree):
        if value2 not in marked[level-1][var2]:
          goals[variable_costs[var2][value2].level][var2].add(value2)
      for var2, value2 in easiest_operator.effects.iteritems():
        marked[level][var2].add(value2)
        marked[level-1][var2].add(value2) # Assumes that actions are read off in order they are selected (no need to reachieve)
  return plan, goals
Exemple #3
0
def rrt(start, goal_sample, distance, sample, extend, collision, goal_test=lambda q: False, iterations=RRT_ITERATIONS, goal_probability=.2):
  # start - start configuration
  # goal - goal configuration
  # sample - sampling function
  # extend - extend function
  # collision - collision checking fn
	
  if collision(start): return None
  if not callable(goal_sample):
    g = goal_sample
    goal_sample = lambda: g
  nodes = [TreeNode(start)]
  for i in irange(iterations):
    goal = random() < goal_probability or i == 0
    s = goal_sample() if goal else sample()

    last = argmin(lambda n: distance(n.config, s), nodes)
    for q in extend(last.config, s):
      if collision(q): break
      last = TreeNode(q, parent=last)
      nodes.append(last)
      if goal_test(last.config): return configs(last.retrace())
    else:
      if goal: return configs(last.retrace())
  return None
  def grow(self, goal, iterations=50, store=ts.PATH, max_tree_size=500):
    if goal in self: self[goal].retrace()
    if self.collision(goal): return None
    nodes1, new_nodes1 = list(take(randomize(self.nodes.values()), max_tree_size)), []
    nodes2, new_nodes2 = [], [TreeNode(goal)]
    for _ in irange(iterations):
      if len(nodes1) + len(new_nodes1) > len(nodes2) + len(new_nodes2):
        nodes1, nodes2 = nodes2, nodes1
        new_nodes1, new_nodes2 = new_nodes2, new_nodes1

      s = self.sample()
      last1 = argmin(lambda n: self.distance(n.config, s), nodes1 + new_nodes1)
      for q in self.extend(last1.config, s):
        if self.collision(q): break
        last1 = TreeNode(q, parent=last1)
        new_nodes1.append(last1)

      last2 = argmin(lambda n: self.distance(n.config, last1.config), nodes2 + new_nodes2)
      for q in self.extend(last2.config, last1.config):
        if self.collision(q): break
        last2 = TreeNode(q, parent=last2)
        new_nodes2.append(last2)
      else:
        if len(nodes1) == 0:
          nodes1, nodes2 = nodes2, nodes1
          new_nodes1, new_nodes2 = new_nodes2, new_nodes1
          last1, last2 = last2, last1
        path1, path2 = last1.retrace(), last2.retrace()[:-1][::-1]
        for p, n in pairs(path2): n.parent = p
        if len(path2) == 0: # TODO - still some kind of circular error
          for n in new_nodes2:
            if n.parent == last2:
              n.parent = path1[-1]
        else:
          path2[0].parent = path1[-1]
        path = path1 + path2

        if store in [ts.ALL, ts.SUCCESS]:
          self.add(*(new_nodes1 + new_nodes2[:-1]))
        elif store == ts.PATH:
          new_nodes_set = set(new_nodes1 + new_nodes2[:-1])
          self.add(*[n for n in path if n in new_nodes_set])
        return path
    if store == ts.ALL:
      self.add(*new_nodes1)
    return None
  def grow(self, goal_sample, iterations=50, goal_probability=.2, store=ts.PATH, max_tree_size=500):
    if not callable(goal_sample): goal_sample = lambda: goal_sample
    nodes, new_nodes = list(take(randomize(self.nodes.values()), max_tree_size)), []
    for i in irange(iterations):
      goal = random() < goal_probability or i == 0
      s = goal_sample() if goal else self.sample()

      last = argmin(lambda n: self.distance(n.config, s), nodes + new_nodes)
      for q in self.extend(last.config, s):
        if self.collision(q): break
        last = TreeNode(q, parent=last)
        new_nodes.append(last)
      else:
        if goal:
          path = last.retrace()
          if store in [ts.ALL, ts.SUCCESS]:
            self.add(*new_nodes)
          elif store == ts.PATH:
            new_nodes_set = set(new_nodes)
            self.add(*[n for n in path if n in new_nodes_set])
          return path
    if store == ts.ALL:
      self.add(*new_nodes)
    return None