Exemple #1
0
def create_module():
    train_images, test_images, train_labels, test_labels = keras_load_data(
        keras.datasets.cifar10)
    verify(train_images, train_labels)
    model = models.Sequential()
    # Conv2D(32,(3,3)) 32,卷积核的数目(即输出的维度);(3,3)kernel size,卷积核尺寸
    # input_shape,32*32*3,x=32,y=32,color=3
    model.add(
        layers.Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3)))
    model.add(layers.MaxPooling2D((2, 2)))
    model.add(layers.Conv2D(64, (3, 3), activation='relu'))
    model.add(layers.MaxPooling2D((2, 2)))
    model.add(layers.Conv2D(64, (3, 3), activation='relu'))
    model.add(layers.Flatten())
    model.add(layers.Dense(64, activation='relu'))
    model.add(layers.Dense(10))
    model.summary()
    model.compile(
        optimizer='adam',
        loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
        metrics=['accuracy'])
    history = model.fit(train_images,
                        train_labels,
                        epochs=10,
                        validation_data=(test_images, test_labels))
    evaluete(history, model, test_images, test_labels)
Exemple #2
0
def save_fashion_mnist(workdir="/WORK/datasset/fashion_mnist"):
    class_names = [
        'T-shirt_top', 'Trouser', 'Pullover', 'Dress', 'Coat', 'Sandal',
        'Shirt', 'Sneaker', 'Bag', 'Ankle_boot'
    ]
    train_images, test_images, train_labels, test_labels = keras_load_data(
        keras.datasets.fashion_mnist)
    __save_dateset(class_names, train_images, train_labels, workdir + "/train")
    __save_dateset(class_names, test_images, test_labels, workdir + "/val")
Exemple #3
0
def save_cifar_10(workdir="/WORK/datasset/cifar10"):
    train_images, test_images, train_labels, test_labels = keras_load_data(
        keras.datasets.cifar10)
    class_names = [
        'airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog',
        'horse', 'ship', 'truck'
    ]
    __save_dateset(class_names, train_images,
                   numpy.array(train_labels).flatten().tolist(),
                   workdir + "/train")
    __save_dateset(class_names, test_images,
                   numpy.array(test_labels).flatten().tolist(),
                   workdir + "/val")
Exemple #4
0
# coding:utf-8
# Copyright (C)
# Author: I
# Contact: [email protected]
if __name__ == '__main__':
    from tools.save_module import load_module
    from tools.load_data import keras_load_data
    from tensorflow import keras
    import tensorflow as tf

    module = load_module("../tmp/save/keras_mnist")
    print(module)
    train_images, test_images, train_labels, test_labels = keras_load_data(keras.datasets.mnist)
    prediced = module.predict(test_images)
    print(test_labels[0], tf.argmax(prediced[0]))
Exemple #5
0
def save_mnist(workdir="/WORK/datasset/mnist"):
    train_images, test_images, train_labels, test_labels = keras_load_data(
        keras.datasets.mnist)
    class_names = ['0', '1', "2", "3", "4", "5", "6", "7", "8", "9"]
    __save_dateset(class_names, train_images, train_labels, workdir + "/train")
    __save_dateset(class_names, test_images, test_labels, workdir + "/val")
Exemple #6
0
def load_mnist():
    train_images, test_images, train_labels, test_labels = keras_load_data(
        keras.datasets.mnist)
    print(train_images.shape)
    return train_images, test_images, train_labels, test_labels
Exemple #7
0
# coding:utf-8
# Copyright (C)
# Author: I
# Contact: [email protected]

import tensorflow as tf

from tools.load_data import keras_load_data

if __name__ == '__main__':
    (train_image, train_label), (test_images, test_label) = keras_load_data(
        tf.keras.datasets.fashion_mnist)

    # 打印训练数据规模 结果为(60000, 28, 28),代表6w张图片
    print(train_image.shape)
    # 引入模型
    model = tf.keras.Sequential()
    # 把图像扁平成28*28的向量
    model.add(tf.keras.layers.Flatten(input_shape=(28, 28)))
    # 隐藏层
    model.add(tf.keras.layers.Dense(128, activation='relu'))
    # 输出层,输出10个概率值,使用softmax把十个输出变成一个概率分布
    model.add(tf.keras.layers.Dense(10, activation='softmax'))
    # 编译模型,规定优化方法和损失函数,当标签使用的是数字编码,使用sparse_categorical_crossentropy这个损失函数
    model.compile(optimizer='adam',
                  loss='sparse_categorical_crossentropy',
                  metrics=['acc'])
    # 训练模型,次数为5
    model.fit(train_image, train_label, epochs=10)
    # 在测试数据上,对我们的模型进行评价
    print(model.evaluate(test_images, test_label))