def main():
    x1 = []
    x2 = []
    for line in sys.stdin:
        s = map(float, line.strip().split())
        x1.append(s[0])
        x2.append(s[1])
    w_tester = WilcoxonTest(x1, x2)
    print "Nr:", w_tester.get_N(), " (it should be more than 10)"
    print "W:", w_tester.get_W()
    print "Result: ", w_tester.get_result()
def main():
    x1 = []
    x2 = []
    for line in sys.stdin:
        s = map(float, line.strip().split())
        x1.append(s[0])
        x2.append(s[1])
    w_tester = WilcoxonTest(x1, x2)
    print "Nr:", w_tester.get_N(), " (it should be more than 10)"
    print "W:", w_tester.get_W()
    print "Result: ", w_tester.get_result()
Exemple #3
0
def main():
    optparser = OptionParser(usage="""
            %prog [OPTIONS] features.tsv[.gz]
            Evaluate features score on features.tsv[.gz] pool""")
    optparser.add_option('-f', '--feature', dest='feature_to_test',
                         type='int', default=None,
                         help='Feature index (0-based) to test score')
    optparser.add_option('--folds', dest='folds',
                         type='int', default=200,
                         help='Number of folds to test')
    optparser.add_option('--fold-size', dest='fold_size',
                         type='int', default=10000,
                         help='Each fold (learn) size in percents of original')
    optparser.add_option('--training script', dest='training_script',
                         type='string', default='learn_and_predict_default.sh',
                         help='Script to learn on pool and predict. Should use -i option to ignore some features')
    opts, args = optparser.parse_args()

    tmp_learn_filepath = "eval.learn.%d.tsv" % os.getpid()
    tmp_test_filepath = "eval.test.%d.tsv" % os.getpid()
    tmp_result_filepath = "eval.result.%d.tsv" % os.getpid()
    tmp_learn_file = SmartWriter().open(tmp_learn_filepath)
    tmp_test_file = SmartWriter().open(tmp_test_filepath)

    x1 = []
    x2 = []
    for iteration in xrange(opts.folds):
        for line in SmartReader().open(args[0]):
            if random.randint(0, 99) <= opts.fold_size:
                print >> tmp_learn_file, line.strip()
            else:
                print >> tmp_test_file, line.strip()
        tmp_learn_file.close()
        tmp_test_file.close()
        os.system('%s %s %s > %s' % (opts.training_script, tmp_learn_filepath, tmp_test_filepath, tmp_result_filepath))
        x1.append(ScoreCalcer(tmp_test_filepath, tmp_result_filepath, delimiter='\t').score_AUC())
        os.system('%s -i %d %s %s > %s' % (opts.training_script, opts.feature, tmp_learn_filepath, tmp_test_filepath, tmp_result_filepath))
        x2.append(ScoreCalcer(tmp_test_filepath, tmp_result_filepath, delimiter='\t').score_AUC())
        os.system('rm %s %s %s' % (tmp_result_filepath, tmp_learn_filepath, tmp_test_filepath))

    w_tester = WilcoxonTest(x1, x2)
    print w_tester.get_result()
    print w_tester.get_W()