def __init__(self): self.total_emb, self.single_size, self.numerical_size, self.multi_size = _get_conf() self.field_size = self.single_size + self.numerical_size + self.multi_size self.embedding_length = self.field_size * Config.embedding_size self._init_data() self._init_placeholder() self._init_Variable() self._init_Model() self.valid_batch = self._get_batch(self.valid, -1) self.valid_label = get_label(self.valid_batch[0], 2) self.valid_dict = { self.ph['single_index']: self.valid_batch[1], self.ph['numerical_index']: self.valid_batch[2], self.ph['numerical_value']: self.valid_batch[3], self.ph['value']: self.valid_batch[-1], self.ph['label']: self.valid_label, self.train_phase: False } if Config.multi_features: for idx, s in enumerate(Config.multi_features): self.valid_dict[self.ph['multi_index_%s' % s]] = self.valid_batch[4] self.valid_dict[self.ph['multi_value_%s' % s]] = self.valid_batch[5] self.global_step = [] self.global_train_auc = [] self.global_valid_auc = [] self._train() self._save_loss()
def __init__(self): self.total_emb, self.single_size, self.numerical_size, self.multi_size = _get_conf( ) self.field_size = self.single_size + self.numerical_size + self.multi_size self.embedding_length = self.field_size * Config.embedding_size self._init_data() self._init_placeholder() self._init_Variable() self._init_Model() self._train()
with tf.Session() as sess: new_saver = tf.train.import_meta_graph(meta_path) new_saver.restore(sess, model_path) # init = tf.global_variables_initializer() # sess.run(init) graph = tf.get_default_graph() ph, train_phase = _init_placeholder(graph) print(ph) prediction = tf.get_collection('pred_network')[0] # loss = tf.get_collection('loss')[0] loss = graph.get_tensor_by_name('loss:0') total_emb, single_size, numerical_size, multi_size = _get_conf() field_size = single_size + numerical_size + multi_size embedding_length = field_size * Config.embedding_size test = _get_data(Config.test_save_file) test = test[:30000] test_batch = _get_batch(test, -1, single_size=single_size, numerical_size=numerical_size, multi_size=multi_size) test_label = get_label(test_batch[0], 2) test_dict = { ph['single_index']: test_batch[1], ph['numerical_index']: test_batch[2],