def tester(type_=1): set_, caffe_, features = test_variables(type_) print 'Testing' + str(type_) + ' net ' + os.environ['EXP'] + '/' + os.environ['NET_ID'] for test_set in set_: test_iter = test_txt_maker(test_set) model = test_prototext(type_, caffe_, features, test_set) test_runner(model, test_set, test_iter,type_) matlab_result_runner()
def tester(type_=1): set_, caffe_, features = test_variables(type_) print 'Testing' + str( type_) + ' net ' + os.environ['EXP'] + '/' + os.environ['NET_ID'] for test_set in set_: test_iter = test_txt_maker(test_set) model = test_prototext(type_, caffe_, features, test_set) test_runner(model, test_set, test_iter, type_) matlab_result_runner()
def grid_search(LOAD_MAT_FILE=1, train2=0): # the features folder save the features computed via the model trained with the train set # the features2 folder save the features computed via the model trained with the trainval set if train2==1: FEATURE_NAME='features2' #features, features2 TEST_SET = 'test' else: FEATURE_NAME='features' #features, features2 TEST_SET = 'val' IMG_DIR, CRF_BIN, FEATURE_DIR, SAVE_DIR = grid_setting(FEATURE_NAME, TEST_SET, LOAD_MAT_FILE) grid_runner(IMG_DIR, CRF_BIN, FEATURE_DIR, SAVE_DIR) os.environ['POSTPROCESS'] = str(1) matlab_path_editor(type_) matlab_runner() matlab_result_runner()
def crf_runner(LOAD_MAT_FILE=1, train2=0): # the features folder save the features computed via the model trained with the train set # the features2 folder save the features computed via the model trained with the trainval set if train2 == 1: FEATURE_NAME = 'features2' #features, features2 TEST_SET = 'test' type_ = 2 else: FEATURE_NAME = 'features' #features, features2 TEST_SET = 'val' type_ = 1 SAVE_DIR, cmd = dense_setting(FEATURE_NAME, TEST_SET) dense_runner(LOAD_MAT_FILE, FEATURE_NAME, TEST_SET, SAVE_DIR, cmd) os.environ['POSTPROCESS'] = str(1) matlab_path_editor(type_) matlab_runner() matlab_result_runner()
def crf_runner(LOAD_MAT_FILE=1, train2=0): # the features folder save the features computed via the model trained with the train set # the features2 folder save the features computed via the model trained with the trainval set if train2==1: FEATURE_NAME='features2' #features, features2 TEST_SET = 'test' type_ = 2 else: FEATURE_NAME='features' #features, features2 TEST_SET = 'val' type_ = 1 SAVE_DIR, cmd = dense_setting(FEATURE_NAME, TEST_SET) dense_runner(LOAD_MAT_FILE, FEATURE_NAME, TEST_SET, SAVE_DIR,cmd) os.environ['POSTPROCESS'] = str(1) matlab_path_editor(type_) matlab_runner() matlab_result_runner()