def __getitem__(self, idx): assert self.train == True, 'getitem fuction only for training.' image = self.images[idx] # debug debug = 0 if debug: print(image.dtype) print(np.array(image, dtype=np.float32).dtype) print(image.shape) tools.show_image( np.array(image, dtype=np.int )) # interfaces is not supported for multi-processing #exit(0) score = np.array((float(self.scores[idx])), dtype=np.float32).reshape([1]) #IMPORTANT sample = {'image': image, 'score': score} if self.transform: sample = self.transform(sample) return sample
def show_result(processed_img: robot_finder.ProcessedImg): show_image( img=draw_points( processed_img.img, processed_img.blue_pts + processed_img.red_pts ), win_name=PROC_WIN, )
def post_screenshot(argv, response): result = {} target = argv[1] if len(argv) > 1 else None fileName = save_fileInfo(response, target) if not fileName: saveFile = target if target else os.path.basename(source) result['stderr'] = 'save %s error' % (saveFile) else: tools.show_image(fileName) return result
def __init__(self, train_dir, test_path, batch_size=128, resize=None): self.test_images, self.test_labels = Reader.analysis_singlefile( test_path) self.train_images, self.train_labels = Reader.analysis_dir(train_dir) self.train_images, self.train_labels = shuffle_arrs( self.train_images, self.train_labels) self.test_images, self.test_labels = shuffle_arrs( self.test_images, self.test_labels) print('loading training image shape is ', np.shape(self.train_images), ' training label shape is ', np.shape(self.train_labels)) print('loading testing image shape is ', np.shape(self.test_images), ' testing label shape is ', np.shape(self.test_labels)) show_image(self.test_images[0], [100, 100]) self.train_generator = Generator(self.train_images, self.train_labels, batch_size, epoch_num=-1, resize=resize).next_batch() self.test_generator = Generator(self.test_images, self.test_labels, batch_size, epoch_num=1, resize=resize).next_batch()
def display(): processed_imgs.wait_next() show_result(processed_imgs.last) show_image(selfies.last, SNAP_WIN)