# optical damping rates Gamma_opt = param.opt_damp_rate() # photon numbers at equiv N = tools.photon_number(param.n_mech, Gamma_opt, param.Gamma) # the calculated gamma is actually gamma/2 param.Gamma = param.Gamma * 2 # actually the detuning is given as an angular freq param.detuning = param.detuning * 2 * np.pi if calc_1D == True: # 1D calculations SXX_plus = tools.spectrum_output(omega, 0, param, False) SXX_minus = tools.spectrum_output(-omega, 0, param, False) SYY_plus = tools.spectrum_output(omega, 1, param, False) SYY_minus = tools.spectrum_output(-omega, 1, param, False) SZZ_plus = tools.spectrum_output(omega, 2, param, False) SZZ_minus = tools.spectrum_output(-omega, 2, param, False) plot_1D = True plot_3D = False style = '-' # 3D calculations if consider_3D == True: SXX_plus_3D = tools.spectrum_output(omega, 0, param, True) SXX_minus_3D = tools.spectrum_output(-omega, 0, param, True) SYY_plus_3D = tools.spectrum_output(omega, 1, param, True)
def photon_number(_n_j, _Gamma_opt, _Gamma_j): return _n_j * _Gamma_j / (abs(_Gamma_opt) + 2 * _Gamma_j) #################### ### PLOT EXAMPLE ### #################### ### omega plus # calculate spectrum of q param = (omega, omega_j, detuning, g, Gamma, kappa, n_opt, n_mech) #param2 = (omega, omega_j, detuning, g, Gamma*1e-6, kappa, n_opt, n_mech) S_x = tools.spectrum_output(0, param) #S_y = tools.spectrum_output(1, param) #S_z = tools.spectrum_output(2, param) #S_x2 = tools.spectrum_output(0, param2) #print(S_x-S_x2) # plot plt.plot(omega / (2 * np.pi) * 1e-3, S_x, label='x') #plt.plot(omega/(2*np.pi)*1e-3, S_y, label = 'y') #plt.plot(omega/(2*np.pi)*1e-3, S_z, label = 'z') #plt.plot(omega/(2*np.pi)*1e-3, S_x2, label = 'x2') plt.axvline(omega_j[0] / (2 * np.pi) * 1e-3, color='gray') #plt.axvline(omega_j[1]/(2*np.pi)*1e-3, color='gray') #plt.axvline(omega_j[2]/(2*np.pi)*1e-3, color='gray')