Exemple #1
0
def normals_label(tans, qs, keep, labels, s, local_normals, labels_frame):
    label = 1
    for i in range(len(keep) - 1):
        j = keep[i]
        k = s + i
        if labels[j] != 0:
            labels_frame[k] = label
        else:
            labels_frame[k] = 0

        normal = Geom.cross3(tans[j], qs[j])
        mag = Geom.norm3(normal)
        if mag == 0:
            local_normals[k] = 1, 0, 0
            labels_frame[k] = 0
        else:
            normal /= mag
            local_normals[k] = normal

        if labels[j + 1] != labels[j]:
            label += 1

    j = keep[-1]
    normal = Geom.cross3(tans[j], qs[j])
    normal /= Geom.norm3(normal)
    local_normals[k] = normal

    local_normals[s + len(keep) - 1] = normal
    labels_frame[s + len(keep) - 1] = 0
Exemple #2
0
def normals_from_ray_pairs(Qs):
    '''
    Each sequential ray is treated as bases for normals
    '''
    N = Qs.shape[0]
    normals = np.empty_like(Qs)

    for i in range(0, N - 1):
        n = Geom.cross3(Qs[i + 1], Qs[i])
        mag = Geom.norm3(n)
        for j in range(3):
            normals[i, j] = n[j] / mag

    normals[-1] = normals[-2]

    return normals
Exemple #3
0
def intersect_pairs(c, q):
    '''
    Find intersections of each sequential pair of rays
    c: ray origin
    q: ray direction
    '''
    N = c.shape[1]
    lines = empty((N, 3))
    lines[:, 0] = -q[1]
    lines[:, 1] = q[0]
    lines[:, 2] = -sum_ax(c.T * lines[:, :2], axis=1)

    points = empty((N - 1, 2))
    for i in range(N - 1):
        p = Geom.cross3(lines[i], lines[i + 1])
        points[i] = p[:2] / p[2]

    return points.T
Exemple #4
0
def detect_loop(ray_inds, Cs, Qs, pluckers, planes, labels, frames, raygrid,
                config, score, total, curv_mean, m2, depths_out, radii_out,
                inlier_out, edge_angles_out, neighbors, status):
    '''
    score: Output, integer array classifying the type of each segment
    '''
    # Each valid segment is labelled with a non-zero label
    # tim = Util.LoopTimer()
    # loop_i = 0
    for ray_ind in ray_inds:
        # tim.loop_start(loop_i)
        # loop_i += 1

        if labels[ray_ind] == 0:
            status[ray_ind] = -1
            score[ray_ind] = 0
            continue

        # First find other segments that are nearby, and might overlap
        # The RayVoxel.Grid class offers very fast lookups at the cost of memory
        near_grid = raygrid.rays_near_ind(ray_ind)
        # tim.add("RayGrid Search")

        if len(near_grid) < 10:
            status[ray_ind] = -1
            continue

        # Filter frame support
        near = filter_frames(near_grid, frames, ray_ind, config.frame_support)
        # close_frames = np.abs(frames[near_grid] - frames[ray_ind]) <= config.frame_support
        # near = near_grid[close_frames]
        # tim.add("Filter frames")

        # Intersect the shortlisted segments with this segment
        # ps, us describe the intersection locations of the other segments'
        # start- and end-points.
        ps1, us, intersecting = find_intersections(Cs, Qs, pluckers, ray_ind,
                                                   planes, near)
        # print("Near:", len(near))
        # tim.add("Find intersections")
        if len(intersecting) < 10:
            status[ray_ind] = -1
            continue

        ray = 0.5 * (Qs[ray_ind] + Qs[ray_ind + 1])
        ray /= Geom.norm3(ray)
        plane = planes[ray_ind]
        normal = plane[:3]
        tangent = Geom.cross3(ray, normal)

        # Create rotation matrix to orthoganally project intersections
        # into plane of this segment. This plane is tangent to the edge
        R_tang = empty((2, 3), ps1.dtype)
        R_tang[0] = ray
        R_tang[1] = tangent

        center = Cs[ray_ind]
        ps2d = dot(R_tang, (ps1 - center).T)
        us2d = dot(R_tang, us.T)
        px, py = ps2d[0], ps2d[1]
        ux, uy = us2d[0], us2d[1]

        # Solve for the intersection with the center of the segment
        # [x, 0] = p + t*u
        uy[uy == 0] = 1e-10
        ts = -py / uy
        depths = px + ts * ux
        # Project the intersecting segments into the normal plane.
        # This plane's normal is roughly aligned with the edge direction.
        R_norm = empty((3, 3), ps1.dtype)
        R_norm[0] = ray
        R_norm[1] = normal
        R_norm[2] = tangent
        centers = dot(R_norm, (Cs[intersecting] - center).T)

        # plane_angles = np.arctan(centers[1]/centers[2])

        # Check where start and end points straddles center ray of this segment
        crossing = py * (py + uy) < 0
        good_depths = (depths > 0.2) & (depths < 1e6)
        # close_frames = np.abs(frames[intersecting] - frames[ray_ind]) <= config.frame_support
        # in_normal_plane = np.abs(plane_angles) <= config.planar_support

        sel = np.where(good_depths & crossing)[0]
        # sel = np.where(good_depths & crossing & (close_frames | in_normal_plane))[0]
        # tim.add("Intersect filter")
        # print("Sel:", len(sel))

        # We're looking for clusters of line segments in the tangent plane
        # These indicate a high likelihood of a persistent edge
        # frames = cloud.frames[ intersecting[sel] ]
        # p = ps2d[:,sel]
        u = us2d[:, sel]
        d = depths[sel]

        c_sel = centers[:, sel]
        rays = empty((2, len(sel)), centers.dtype)
        rays[0] = d - c_sel[0]
        rays[1] = -c_sel[1]

        rays /= CircleRays.norm_ax(rays, axis=0)
        # tim.add("Prepare clustering")

        dthresh = config.depth_thresh
        # Cluster based on circle space
        cluster_inds, radius, depth, dual_centers, dual_rays, inlier_frac = find_cluster_line4(
            c_sel, rays, depth_thresh=dthresh, percentile=config.inlier_thresh)

        # tim.add("Clustering")

        cluster_full = intersecting[sel[cluster_inds]]
        M = min(neighbors.shape[1], len(cluster_full))

        if inlier_frac > 0.02:
            if abs(radius) < config.min_radius:
                # Hard edge
                status[ray_ind] = 1
                score[ray_ind] += len(cluster_full)
            else:
                status[ray_ind] = 2
                score[ray_ind] += len(cluster_full)

            # Want to estimate the depths of the rays on either side of the segment
            u_cluster = u[:, cluster_inds]
            intersect_angles = np.arctan(-u_cluster[0] / u_cluster[1])
            # Zero is verticle
            alpha = np.median(intersect_angles)
            # Find angle between rays
            theta = 0.5 * arccos(dot(Qs[ray_ind], Qs[ray_ind + 1]))
            d1 = depth * sin(PI / 2 + alpha) / sin(PI / 2 - alpha - theta)
            d2 = depth * sin(PI / 2 - alpha) / sin(PI / 2 + alpha - theta)
            depths_out[ray_ind, 0] = d1
            depths_out[ray_ind, 1] = d2
            depths_out[ray_ind, 2] = depth

            # depths_out[ray_ind] = depth
            radii_out[ray_ind] = radius
            inlier_out[ray_ind] = inlier_frac
            edge_angles_out[ray_ind] = alpha

            ray_c = rays[:, cluster_inds]
            cluster_angles = np.abs(np.arctan(ray_c[1] / ray_c[0]))

            closest = Util.argsort(cluster_angles)
            neighbors[ray_ind, :M] = cluster_full[closest[:M]]

        else:
            status[ray_ind] = -1
            score[ray_ind] = 0
            labels[ray_ind] = 0
            continue