def generate_shoe(): base64Img = request.args.get('image') base64Img = base64Img.replace(" ", "+") base64Img = Helper.get_fixed_base64_image(base64Img) decoded_img = base64.b64decode(base64Img) img_buffer = BytesIO(decoded_img) imageData = Image.open(img_buffer).convert('LA') #num_channel = len(imageData.split()) #print("num_channel:", num_channel) img = ImageOps.fit(imageData, image_shape) img_tensor = transforms(img) img_tensor = img_tensor.unsqueeze(0) with torch.no_grad(): generated_image = gen(img_tensor[:, 1:2, :, :]) print("generated_image.shape : ", generated_image.shape) save_image(generated_image[0], "image1.png") with open("image1.png", "rb") as image_file: encoded_string = base64.b64encode(image_file.read()).decode('ascii') return jsonify("data:image/png;base64," + encoded_string)
def generate_shoe_by_hed(): base64Img = request.args.get('image') base64Img = base64Img.replace(" ", "+") """""" base64Img = Helper.get_fixed_base64_image(base64Img) decoded_img = base64.b64decode(base64Img) img_buffer = BytesIO(decoded_img) imageData = Image.open(img_buffer).convert('LA') img = ImageOps.fit(imageData, image_shape) img_tensor = transforms(img) img_tensor = img_tensor.unsqueeze(0) print("img_tensor.shape : ", img_tensor.shape) img = cv2.imdecode(img, cv2.IMREAD_COLOR) cv2.imshow(img) cv2.waitKey(0) with torch.no_grad(): generated_image = gen(img_tensor[:, 0:1, :, :]) print("generated_image.shape : ", generated_image.shape) save_image(generated_image[0], "image1.png") with open("image1.png", "rb") as image_file: encoded_string = base64.b64encode(image_file.read()).decode('ascii') return jsonify("data:image/png;base64," + encoded_string)