def process_file(self, filename_in, filename_out,draw_spline=True):

        if not os.path.isfile(filename_in):
            return []

        image = cv2.imread(filename_in)
        image = tools_image.rgb2bgr(image)
        if image is None:
            return []

        if draw_spline==False:
            boxes_yxyx, scores, classes  = self.process_image(image)
            markup = tools_YOLO.get_markup(filename_in, boxes_yxyx, scores, classes)
            tools_YOLO.draw_and_save(filename_out, image, boxes_yxyx, scores, classes,self.colors, self.class_names)
        else:
            r = self.model.detect([image], verbose=0)[0]
            boxes_yxyx, scores, classes,masks = r['rois'], r['scores'], r['class_ids'],r['masks']
            class_ID = tools_IO.smart_index(self.class_names,'person')[0]
            msk = (scores > self.obj_threshold).tolist()

            #msk = msk and (classes == class_ID)

            msk = numpy.array(msk)
            boxes_yxyx, scores, classes, masks = boxes_yxyx[msk], scores[msk], classes[msk], masks[:,:,msk]
            markup = tools_YOLO.get_markup(filename_in, boxes_yxyx, scores, classes)

            detector_Mask_RCNN_core.display_instances(tools_image.desaturate(image), boxes_yxyx, masks, classes, self.class_names,filename_out,scores,self.colors)

        return markup
Exemple #2
0
    def process_file(self, filename_in, filename_out):

        if not os.path.isfile(filename_in):
            return []

        image = cv2.imread(filename_in)
        if image is None:
            return []

        boxes_yxyx, classes, scores = self.process_image(image)

        tools_YOLO.draw_and_save(filename_out, image, boxes_yxyx, scores,
                                 classes, self.colors, self.class_names)
        markup = tools_YOLO.get_markup(filename_in, boxes_yxyx, scores,
                                       classes)

        return markup
Exemple #3
0
 def process_folder_negatives(self,
                              path_input,
                              path_out,
                              list_of_masks='*.png,*.jpg',
                              limit=1000000,
                              confidence=0.80):
     tools_IO.remove_files(path_out)
     local_filenames = tools_IO.get_filenames(path_input,
                                              list_of_masks)[:limit]
     local_filenames = numpy.sort(local_filenames)
     for local_filename in local_filenames:
         image = cv2.imread(path_input + local_filename)
         if image is None: return []
         boxes_yxyx, classes, scores = self.process_image(image)
         if len(scores) > 0 and scores[0] >= confidence:
             filename_out = path_out + '%02d_' % int(
                 100 * scores[0]) + local_filename
             tools_YOLO.draw_and_save(filename_out, image, boxes_yxyx,
                                      scores, classes, self.colors,
                                      self.class_names)
     return
Exemple #4
0
def draw_and_save(filename_out, image, boxes_yxyx, scores, classes, colors,
                  class_names):
    return tools_YOLO.draw_and_save(filename_out, image, boxes_yxyx, scores,
                                    classes, colors, class_names)