Exemple #1
0
def test_3level_type_multistart_XYZ_optimization():
    design_vars = {k: v for k, v in zip('xy', optimal.T)}
    design_vars['z'] = (optimal[:, 2], 0, 4)
    xyz_problem = TopFarmProblem(design_vars,
                                 cost_comp=DummyCost(optimal,
                                                     ['x', 'y', 'z', 'type']),
                                 constraints=[
                                     SpacingConstraint(2),
                                     XYBoundaryConstraint([(0, 0), (4, 4)],
                                                          'square')
                                 ],
                                 driver=EasyScipyOptimizeDriver(disp=False))

    initial_xyz_problem = TopFarmProblem(
        design_vars={k: v
                     for k, v in zip('xyz', optimal.T)},
        cost_comp=xyz_problem,
        driver=DOEDriver(
            ListGenerator([[('x', [0, 4]), ('y', [2, 2]), ('z', [4, 1])]])))

    tf = TopFarmProblem({'type': ([0, 0], 0, 1)},
                        cost_comp=initial_xyz_problem,
                        driver=DOEDriver(FullFactorialGenerator(2)))

    cost, _, recorder = tf.optimize()
    best_index = np.argmin(recorder.get('cost'))
    initial_xyz_recorder = recorder['recorder'][best_index]
    xyz_recorder = initial_xyz_recorder.get('recorder')[0]
    npt.assert_almost_equal(xyz_recorder['cost'][-1], cost)
Exemple #2
0
def testAEP_topfarm_optimization_2tb_scale(get_fuga, scale):
    D = 80.0
    B = 2 * D + 10
    init_pos = np.array([(-10, 1 * D), (10, -D)])

    wind_atlas = 'MyFarm/north_pm30_only.lib'
    pyFuga = get_fuga(init_pos[:1, 0], init_pos[:1, 1], wind_atlas=wind_atlas)
    AEP_pr_tb = pyFuga.get_aep()[1]
    pyFuga = get_fuga(init_pos[:, 0], init_pos[:, 1], wind_atlas=wind_atlas)
    boundary = [(-B, B), (B, B), (B, -B), (-B, -B), (-B, B)]

    plot_comp = NoPlot()
    # plot_comp = PlotComp()

    cost_comp = AEPCostModelComponent(
        'xy',
        init_pos.shape[0],
        lambda x, y: scale * pyFuga.get_aep(np.array([x, y]).T)[0],  # only aep
        lambda x, y: scale * pyFuga.get_aep_gradients(np.array([x, y]).T)[:2]
    )  # only dAEPdx and dAEPdy

    tf = TopFarmProblem(
        dict(zip('xy', init_pos.T)),
        cost_comp,
        constraints=[SpacingConstraint(2 * D),
                     XYBoundaryConstraint(boundary)],
        plot_comp=plot_comp,
        driver=EasyScipyOptimizeDriver(tol=1e-8, disp=False),
        expected_cost=AEP_pr_tb * 2 * scale)
    cost, _, rec = tf.optimize()
    tf.plot_comp.show()
    uta.assertAlmostEqual(-cost / scale, AEP_pr_tb * 2, delta=.02)
Exemple #3
0
def main():
    if __name__ == '__main__':
        from topfarm.cost_models.dummy import DummyCost, DummyCostPlotComp
        from topfarm.constraint_components.spacing import SpacingConstraint
        from topfarm.constraint_components.boundary import XYBoundaryConstraint

        initial = np.array([[6, 0], [6, -8], [1,
                                              1]])  # initial turbine layouts
        optimal = np.array([[2.5, -3], [6, -7],
                            [4.5, -3]])  # optimal turbine layouts
        boundary = np.array([(0, 0), (6, 0), (6, -10),
                             (0, -10)])  # turbine boundaries
        desired = np.array([[3, -3], [7, -7], [4,
                                               -3]])  # desired turbine layouts

        plot_comp = DummyCostPlotComp(optimal)
        tf = TopFarmProblem(
            design_vars=dict(zip('xy', initial.T)),
            cost_comp=DummyCost(optimal_state=desired, inputs=['x', 'y']),
            constraints=[XYBoundaryConstraint(boundary),
                         SpacingConstraint(2)],
            driver=EasyScipyOptimizeDriver(),
            plot_comp=plot_comp)
        tf.optimize()
        plot_comp.show()
Exemple #4
0
    def tf(xy_boundary=[(0, 0), (4, 4)],
           z_boundary=(0, 4),
           xy_boundary_type='square',
           **kwargs):
        optimal = [(0, 2, 4), (4, 2, 1)]
        xyz = np.array([(0, 1, 0), (1, 1, 1)])
        p1 = DummyCost(optimal, 'xyz')
        design_vars = dict(zip('xy', xyz.T))
        design_vars['z'] = (xyz[:, 2], z_boundary[0], z_boundary[1])
        k = {
            'design_vars':
            design_vars,
            'cost_comp':
            p1,
            'driver':
            EasyScipyOptimizeDriver(optimizer='COBYLA', disp=False,
                                    maxiter=10),
        }
        k.update(kwargs)

        return TopFarmProblem(constraints=[
            XYBoundaryConstraint(xy_boundary, xy_boundary_type),
            SpacingConstraint(2)
        ],
                              **k)
Exemple #5
0
def test_TopFarmListRecorder_continue(tf_generator, load_case, n_rec, n_fev):

    D = 80.0
    D2 = 2 * D + 10
    init_pos = np.array([(0, 2 * D), (0, 0), (0, -2 * D)])
    init_pos[:, 0] += [-40, 0, 40]

    pyFuga = test_pyfuga.get_fuga()(init_pos[:, 0],
                                    init_pos[:, 1],
                                    wind_atlas='MyFarm/north_pm45_only.lib')
    boundary = [(-D2, -D2), (D2, D2)]
    plot_comp = XYPlotComp()
    plot_comp = NoPlot()
    tf = TopFarmProblem(
        dict(zip('xy', init_pos.T)),
        cost_comp=pyFuga.get_TopFarm_cost_component(),
        constraints=[
            SpacingConstraint(2 * D),
            XYBoundaryConstraint(boundary, 'square')
        ],
        driver=EasyScipyOptimizeDriver(tol=1e-10, disp=False),
        plot_comp=plot_comp,
        record_id=tfp +
        'recordings/test_TopFarmListRecorder_continue:%s' % load_case,
        expected_cost=25)

    _, _, recorder = tf.optimize()
    # Create test file:
    # 1) delete file "test_files/recordings/test_TopFarmListRecorder_continue"
    # 2) Uncomment line below, run and recomment
    # if load_case=="": recorder.save() # create test file
    npt.assert_equal(recorder.driver_cases.num_cases, n_rec)
    npt.assert_equal(tf.driver.result['nfev'], n_fev)

    tf.plot_comp.show()
Exemple #6
0
def main():
    if __name__ == '__main__':
        from topfarm.cost_models.dummy import DummyCost, DummyCostPlotComp
        from topfarm.constraint_components.spacing import SpacingConstraint
        from topfarm.constraint_components.boundary import XYBoundaryConstraint
        from openmdao.api import view_model

        initial = np.array([[6, 0], [6, -8], [1,
                                              1]])  # initial turbine layouts
        optimal = np.array([[2.5, -3], [6, -7],
                            [4.5, -3]])  # optimal turbine layouts
        boundary = np.array([(0, 0), (6, 0), (6, -10),
                             (0, -10)])  # turbine boundaries
        desired = np.array([[3, -3], [7, -7], [4,
                                               -3]])  # desired turbine layouts
        drivers = [
            EasySimpleGADriver(max_gen=10,
                               pop_size=100,
                               bits={
                                   'x': [12] * 3,
                                   'y': [12] * 3
                               },
                               random_state=1),
            EasyScipyOptimizeDriver()
        ]
        plot_comp = DummyCostPlotComp(optimal)
        tf = TopFarmProblem(
            design_vars=dict(zip('xy', initial.T)),
            cost_comp=DummyCost(optimal_state=desired, inputs=['x', 'y']),
            constraints=[XYBoundaryConstraint(boundary),
                         SpacingConstraint(2)],
            driver=drivers[1],
            plot_comp=plot_comp)
        cost, _, recorder = tf.optimize()
        plot_comp.show()
def test_turbine_Type_multistart_XYZ_optimization():
    plot_comp = DummyCostPlotComp(optimal, delay=.5)
    plot_comp = NoPlot()
    xyz = [(0, 0, 0), (1, 1, 1)]

    p1 = DummyCost(optimal_state=optimal,
                   inputs=['x', 'y', 'z', 'type'])

    p2 = TurbineXYZOptimizationProblem(
        cost_comp=p1,
        turbineXYZ=xyz,
        min_spacing=2,
        boundary_comp=get_boundary_comp(),
        plot_comp=plot_comp,
        driver=EasyScipyOptimizeDriver(disp=True, optimizer='COBYLA', maxiter=10))
    p3 = InitialXYZOptimizationProblem(
        cost_comp=p2,
        turbineXYZ=xyz, min_spacing=2,
        boundary_comp=get_boundary_comp(),
        driver=DOEDriver(ListGenerator([[('x', [0, 4]), ('y', [2, 2]), ('z', [4, 1])]])))
    tf = TurbineTypeOptimizationProblem(
        cost_comp=p3,
        turbineTypes=[0, 0], lower=0, upper=1,
        driver=DOEDriver(FullFactorialGenerator(1)))

    case_gen = tf.driver.options['generator']
    cost, state, recorder = tf.optimize()
    print(cost)
    # print (state)
    print(recorder.get('type'))
    print(recorder.get('cost'))
    best_index = np.argmin(recorder.get('cost'))
    initial_xyz_recorder = recorder['recorder'][best_index]
    xyz_recorder = initial_xyz_recorder.get('recorder')[0]
    npt.assert_almost_equal(xyz_recorder['cost'][-1], cost)
Exemple #8
0
def get_tf(init_pos, pyFuga, boundary, boundary_type='convex_hull'):
    return TopFarmProblem(dict(zip('xy', init_pos.T)),
                          pyFuga.get_TopFarm_cost_component(),
                          constraints=[
                              SpacingConstraint(160),
                              XYBoundaryConstraint(boundary, boundary_type)
                          ],
                          driver=EasyScipyOptimizeDriver(disp=False))
Exemple #9
0
def get_tf(cost_comp):
    return TopFarmProblem(dict(zip('xy', initial.T)),
                          cost_comp=cost_comp,
                          constraints=[
                              SpacingConstraint(min_spacing),
                              XYBoundaryConstraint(boundary)
                          ],
                          driver=EasyScipyOptimizeDriver(disp=False))
    def _topfarm_obj(gradients, cost_comp=None, **kwargs):

        return TopFarmProblem(
            {'x': initial[:, 0], 'y': initial[:, 1]},
            cost_comp=cost_comp or CostModelComponent(['x', 'y'], 4, cost, gradients),
            constraints=[SpacingConstraint(2), XYBoundaryConstraint(boundary)],
            driver=EasyScipyOptimizeDriver(),
            **kwargs)
Exemple #11
0
def test_setup_as_constraint_z():
    tf = TopFarmProblem(
        {'z': (initial[:, 2], 0, 2)},
        DummyCost(desired[:, :2], 'z'),
        driver=EasyScipyOptimizeDriver(disp=False),
    )

    tf.optimize()
    npt.assert_array_less(tf['z'], 2 + 1e-10)
Exemple #12
0
def test_smart_start_aep_map_PyWakeAEP():
    site = IEA37Site(16)
    n_wt = 4

    x, y = site.initial_position[:n_wt].T
    wd_lst = np.arange(0, 360, 45)
    ws_lst = [10]
    turbines = hornsrev1.HornsrevV80()
    site = UniformSite([1], .75)
    site.default_ws = ws_lst
    site.default_wd = wd_lst

    aep = PyWakeAEP(wake_model=NOJ(site, turbines))
    aep_1wt = aep.calculate_AEP([0], [0]).sum()

    tf = TopFarmProblem(design_vars={
        'x': x,
        'y': y
    },
                        cost_comp=aep.get_TopFarm_cost_component(n_wt),
                        driver=EasyScipyOptimizeDriver(),
                        constraints=[
                            SpacingConstraint(160),
                            CircleBoundaryConstraint((0, 0), 500)
                        ])
    x = np.arange(-500, 500, 10)
    y = np.arange(-500, 500, 10)
    XX, YY = np.meshgrid(x, y)

    tf.smart_start(XX,
                   YY,
                   aep.get_aep4smart_start(wd=wd_lst, ws=ws_lst),
                   radius=40,
                   seed=1)
    tf.evaluate()

    if 0:
        wt_x, wt_y = tf['x'], tf['y']
        for i, _ in enumerate(wt_x, 1):
            print(aep.calculate_AEP(wt_x[:i], wt_y[:i]).sum((1, 2)))
        X_j, Y_j, aep_map = aep.aep_map(x,
                                        y,
                                        0,
                                        wt_x,
                                        wt_y,
                                        ws=ws_lst,
                                        wd=wd_lst)
        print(tf.evaluate())
        import matplotlib.pyplot as plt
        c = plt.contourf(X_j, Y_j, aep_map, 100)
        plt.colorbar(c)
        plt.plot(wt_x, wt_y, '2r')
        for c in tf.model.constraint_components:
            c.plot()
        plt.axis('equal')
        plt.show()
    npt.assert_almost_equal(aep_1wt * n_wt, tf['AEP'], 5)
Exemple #13
0
def get_tf(**kwargs):
    k = {'cost_comp': DummyCost(desired[:, :2], [topfarm.x_key, topfarm.y_key]),
         'design_vars': {topfarm.x_key: initial[:, 0], topfarm.y_key: initial[:, 1]},
         'driver': EasyScipyOptimizeDriver(disp=False),
         'plot_comp': NoPlot(),
         'constraints': [SpacingConstraint(2), XYBoundaryConstraint(boundary)]}

    k.update(kwargs)
    return TopFarmProblem(**k)
Exemple #14
0
 def get_tf(wake_model):
     return TopFarmProblem(
         design_vars=dict(zip('xy', init_pos.T)),
         cost_comp=AEPCalculator(wind_res, wake_model,
                                 wdir=np.arange(0, 360, 12)
                                 ).get_TopFarm_cost_component(),
         constraints=[SpacingConstraint(min_spacing),
                      XYBoundaryConstraint(boundary)],
         driver=EasyScipyOptimizeDriver())
def get_tf(initial, optimal, boundary, plot_comp=NoPlot()):
    initial, optimal = map(np.array, [initial, optimal])
    return TopFarmProblem(
        {
            'x': initial[:, 0],
            'y': initial[:, 1]
        },
        DummyCost(optimal),
        constraints=[XYBoundaryConstraint(boundary, 'polygon')],
        driver=EasyScipyOptimizeDriver(tol=1e-8, disp=False),
        plot_comp=plot_comp)
Exemple #16
0
def test_TopFarmListRecorder_continue_wrong_recorder(tf_generator):

    tf = TopFarmProblem({'type': ([0, 0, 0], 0, 1)},
                        cost_comp=DummyCost(np.array([[0, 1, 0]]).T, ['type']),
                        driver=EasyScipyOptimizeDriver(disp=False),
                        record_id=tfp +
                        'recordings/test_TopFarmListRecorder_continue:latest')

    tf.optimize()
    assert 'type' in tf.recorder.keys()
    assert 'x' not in tf.recorder.keys()
Exemple #17
0
def test_setup_as_constraint_xyz():
    desvar = dict(zip('xy', initial.T))
    desvar['z'] = (initial[:, 2], 0, 2)
    tf = TopFarmProblem(desvar,
                        DummyCost(desired, 'xyz'),
                        driver=EasyScipyOptimizeDriver(disp=False),
                        constraints=[XYBoundaryConstraint(boundary)])
    tf.optimize()
    tb_pos = tf.turbine_positions
    tol = 1e-4
    assert tb_pos[1][0] < 6 + tol  # check within border
    npt.assert_array_less(tf['z'], 2 + tol)  # check within height limit
Exemple #18
0
 def get_tf(windFarmModel):
     return TopFarmProblem(design_vars=dict(zip('xy', init_pos.T)),
                           cost_comp=PyWakeAEPCostModelComponent(
                               windFarmModel,
                               n_wt=3,
                               ws=10,
                               wd=np.arange(0, 360, 12)),
                           constraints=[
                               SpacingConstraint(min_spacing),
                               XYBoundaryConstraint(boundary)
                           ],
                           driver=EasyScipyOptimizeDriver(),
                           plot_comp=plot_comp())
 def get_TurbineXYZOptimizationProblem(cost_comp=DummyCost(
     optimal, ['x', 'y', 'z']),
                                       turbineXYZ=[[0, 0, 0], [2, 2, 2]],
                                       xy_boundary=[(0, 0), (5, 5)],
                                       z_boundary=[1, 4],
                                       xy_boundary_type='square',
                                       plot_comp=None):
     return TurbineXYZOptimizationProblem(
         cost_comp=cost_comp,
         turbineXYZ=turbineXYZ,
         boundary_comp=BoundaryComp(len(turbineXYZ), xy_boundary,
                                    z_boundary, xy_boundary_type),
         plot_comp=plot_comp,
         driver=EasyScipyOptimizeDriver(disp=False))
Exemple #20
0
def main():
    if __name__ == '__main__':
        # define the conditions for the wind farm
        boundary = [(0, 0), (6, 0), (6, -10), (0, -10)]  # turbine boundaries
        initial = np.array([[6, 0], [6, -8], [1, 1], [-1, -8]])  # initial turbine pos
        desired = np.array([[3, -3], [7, -7], [4, -3], [3, -7]])  # desired turbine pos
        optimal = np.array([[2.5, -3], [6, -7], [4.5, -3], [3, -7]])  # optimal layout
        min_spacing = 2  # min distance between turbines

        # ------------------------ OPTIMIZATION ------------------------

        # create the wind farm and run the optimization

        def wt_cost(i, x, y):
            time.sleep(0.01)
            return (desired[i, 0] - x[i])**2 + (desired[i, 1] - y[i])**2

        n_wt = len(initial)
        comps = [CostModelComponent('xy', 4,
                                    cost_function=lambda x, y, i=i:wt_cost(i, x, y),
                                    objective=False,
                                    output_key='cost%d' % i) for i in range(n_wt)]

        def sum_map(**kwargs):

            return np.sum([kwargs['cost%d' % i] for i in range(n_wt)])

        comps.append(CostModelComponent(['cost%d' % i for i in range(n_wt)], 1,
                                        cost_function=sum_map,
                                        objective=True))
        cost_comp = TopFarmParallelGroup(comps)

        tf = TopFarmProblem(
            design_vars={'x': initial[:, 0], 'y': initial[:, 1]},
            cost_comp=cost_comp,
            constraints=[XYBoundaryConstraint(boundary),
                         SpacingConstraint(min_spacing)],
#            plot_comp=DummyCostPlotComp(desired),
            plot_comp=NoPlot(),
            driver=EasyScipyOptimizeDriver()
        )
#        view_model(tf)
        #print(tf.evaluate({'x': desired[:, 0], 'y': desired[:, 1]}))
        print(tf.evaluate({'x': optimal[:, 0], 'y': optimal[:, 1]}, disp=False))
        #print(tf.evaluate({'x': initial[:, 0], 'y': initial[:, 1]}))
#        tic = time.time()
        cost, state, recorder = tf.optimize()
#        toc = time.time()
#        print('optimized in {:.3f}s '.format(toc-tic))
        tf.plot_comp.show()
Exemple #21
0
def test_smart_start_aep_map(seed, radius, resolution, tol):
    site = IEA37Site(16)
    n_wt = 4
    x, y = site.initial_position[:n_wt].T
    wd_lst = np.arange(0, 360, 45)
    ws_lst = [10]
    turbines = hornsrev1.HornsrevV80()
    site = UniformSite([1], .75)
    site.default_ws = ws_lst
    site.default_wd = wd_lst
    wfm = NOJ(site, turbines)
    aep_comp = PyWakeAEPCostModelComponent(wfm, n_wt=n_wt)
    aep_1wt = wfm([0], [0]).aep().sum()

    tf = TopFarmProblem(design_vars={
        'x': x,
        'y': y
    },
                        cost_comp=aep_comp,
                        driver=EasyScipyOptimizeDriver(),
                        constraints=[
                            SpacingConstraint(160),
                            CircleBoundaryConstraint((0, 0), radius)
                        ])
    x = np.arange(-radius, radius, resolution)
    y = np.arange(-radius, radius, resolution)
    XX, YY = np.meshgrid(x, y)

    tf.smart_start(XX,
                   YY,
                   aep_comp.get_aep4smart_start(wd=wd_lst, ws=ws_lst),
                   radius=40,
                   plot=0,
                   seed=seed)
    tf.evaluate()

    if 0:
        wt_x, wt_y = tf['x'], tf['y']
        for i, _ in enumerate(wt_x, 1):
            print(wfm(wt_x[:i], wt_y[:i]).aep().sum(['wd', 'ws']))
        aep_comp.windFarmModel(wt_x, wt_y, ws=ws_lst,
                               wd=wd_lst).flow_map().aep_xy().plot()
        print(tf.evaluate())
        import matplotlib.pyplot as plt
        plt.plot(wt_x, wt_y, '2r')
        for c in tf.model.constraint_components:
            c.plot()
        plt.axis('equal')
        plt.show()
    npt.assert_almost_equal(aep_1wt * n_wt, tf['AEP'], tol)
Exemple #22
0
def test_2level_turbineType_and_XYZ_optimization():
    design_vars = {k: v for k, v in zip('xy', optimal.T)}
    design_vars['z'] = (optimal[:, 2], 0, 4)
    xyz_problem = TopFarmProblem(design_vars,
                                 cost_comp=DummyCost(optimal,
                                                     ['x', 'y', 'z', 'type']),
                                 constraints=[
                                     SpacingConstraint(2),
                                     XYBoundaryConstraint([(0, 0), (4, 4)],
                                                          'square')
                                 ],
                                 driver=EasyScipyOptimizeDriver(disp=False))
    tf = TopFarmProblem({'type': ([0, 0], 0, 1)},
                        cost_comp=xyz_problem,
                        driver=DOEDriver(FullFactorialGenerator(2)))
    cost = tf.optimize()[0]
    assert cost == 0
Exemple #23
0
def testPolygonConcave():
    optimal = [(1.5, 1.3), (4, 1)]
    boundary = [(0, 0), (5, 0), (5, 2), (3, 2), (3, 1), (2, 1), (2, 2), (0, 2),
                (0, 0)]
    plot_comp = NoPlot()  # DummyCostPlotComp(optimal)
    initial = [(-0, .1), (4, 1.5)][::-1]
    tf = TopFarm(initial,
                 DummyCost(optimal, inputs=['x', 'y']),
                 0,
                 boundary=boundary,
                 boundary_type='polygon',
                 plot_comp=plot_comp,
                 driver=EasyScipyOptimizeDriver(tol=1e-8, disp=False))
    tf.evaluate()
    tf.optimize()
    np.testing.assert_array_almost_equal(tf.turbine_positions[:, :2], optimal,
                                         4)
    plot_comp.show()
Exemple #24
0
def testPolygonTwoRegionsStartInWrong():
    optimal = [(1, 1), (4, 1)]
    boundary = [(0, 0), (5, 0), (5, 2), (3, 2), (3, 0), (2, 0), (2, 2), (0, 2),
                (0, 0)]
    plot_comp = NoPlot()
    # plot_comp = DummyCostPlotComp(optimal, delay=.1)
    initial = [(3.5, 1.5), (0.5, 1.5)]
    tf = TopFarm(initial,
                 DummyCost(optimal, inputs=['x', 'y']),
                 0,
                 boundary=boundary,
                 boundary_type='polygon',
                 plot_comp=plot_comp,
                 driver=EasyScipyOptimizeDriver(tol=1e-6, disp=False))
    tf.optimize()
    plot_comp.show()
    np.testing.assert_array_almost_equal(tf.turbine_positions[:, :2], optimal,
                                         4)
Exemple #25
0
def test_setup_as_constraint_xy():
    # plot_comp = DummyCostPlotComp(desired)
    plot_comp = NoPlot()

    tf = TopFarmProblem({
        'x': initial[:, 0],
        'y': initial[:, 1]
    },
                        DummyCost(desired[:, :2]),
                        constraints=[XYBoundaryConstraint(boundary)],
                        driver=EasyScipyOptimizeDriver(disp=False),
                        plot_comp=plot_comp)

    tf.optimize()
    tb_pos = tf.turbine_positions[:, :2]
    tf.plot_comp.show()
    tol = 1e-4
    assert tb_pos[1][0] < 6 + tol  # check within border
def test_turbineType_and_XYZ_optimization():
    plot_comp = DummyCostPlotComp(optimal)
    plot_comp = NoPlot()
    cost_comp = DummyCost(
        optimal_state=optimal,
        inputs=['x', 'y', 'z', 'type'])
    xyz_opt_problem = TurbineXYZOptimizationProblem(
        cost_comp,
        turbineXYZ=[(0, 0, 0), (1, 1, 1)],
        min_spacing=2,
        boundary_comp=get_boundary_comp(),
        plot_comp=plot_comp,
        driver=EasyScipyOptimizeDriver(disp=False))
    tf = TurbineTypeOptimizationProblem(
        cost_comp=xyz_opt_problem,
        turbineTypes=[0, 0], lower=0, upper=1,
        driver=DOEDriver(FullFactorialGenerator(2)))
    cost = tf.optimize()[0]
    npt.assert_almost_equal(cost, 0)
Exemple #27
0
def test_NestedTopFarmListRecorder(tf_generator):
    optimal = [(0, 2, 4, 1), (4, 2, 1, 0)]
    type_lst = [[0, 0], [1, 0], [0, 1]]
    p1 = DummyCost(optimal_state=optimal, inputs=['x', 'y', 'z', 'type'])
    p2 = tf_generator(cost_comp=p1, driver=EasyScipyOptimizeDriver(disp=False))

    tf = TopFarmProblem({'type': ([0, 0], 0, 1)},
                        cost_comp=p2,
                        driver=DOEDriver(
                            ListGenerator([[('type', t)] for t in type_lst])))

    cost, _, recorder = tf.optimize()
    npt.assert_almost_equal(cost, 0)
    npt.assert_array_almost_equal(recorder.get('type'), type_lst)
    npt.assert_array_almost_equal(recorder.get('cost'), [1, 0, 2])

    for sub_rec in recorder.get('recorder'):
        npt.assert_array_almost_equal(
            np.array([sub_rec[k][-1] for k in ['x', 'y', 'z']]).T,
            np.array(optimal)[:, :3])
Exemple #28
0
def find_optimal_scaling(topfarm_generator_scalable):
    i = 0.000001
    res = []
    while i < 100000:
        driver = EasyScipyOptimizeDriver(disp=False, tol=1e-6 * i)
        tf = topfarm_generator_scalable(driver)
        tf.model.get_objectives()['cost_comp.cost']['scaler'] = i

        cost, _, recorder = tf.optimize()
        N = recorder.driver_cases.num_cases
        res.append((i, N, cost))
        print(i, N, cost)
        i *= 2

    import matplotlib.pyplot as plt
    plt.figure()
    res = np.array(res)
    plt.plot(res[:, 0], res[:, 1])
    plt.xscale('log')
    plt.show()
def test_turbineXYZ_optimization():
    optimal = np.array([(5, 4, 3), (3, 2, 1)])
    turbineXYZ = np.array([[0, 0, 0], [2, 2, 2]])
    design_vars = {k: v for k, v in zip('xy', turbineXYZ.T)}
    design_vars['z'] = (turbineXYZ[:, 2], 1, 4)

    xy_boundary = [(0, 0), (5, 5)]
    tf = TopFarmProblem(
        design_vars=design_vars,
        cost_comp=DummyCost(optimal, 'xyz'),
        driver=EasyScipyOptimizeDriver(disp=False),
        constraints=[XYBoundaryConstraint(xy_boundary, 'square')])

    cost, state = tf.evaluate()
    assert cost == 52
    np.testing.assert_array_equal(state['x'], [0, 2])

    cost = tf.optimize()[0]
    assert cost < 1e6
    np.testing.assert_array_almost_equal(tf.turbine_positions, optimal[:, :2],
                                         3)
Exemple #30
0
def testCostModelComponentDiffShapeInput():
    def aep_cost(x, y, h):
        opt_x, opt_y = optimal.T
        return -np.sum((x - opt_x)**2 + (y - opt_y)**2) + h, {
            'add_out': sum(x)
        }

    cost_comp = AEPCostModelComponent(['x', 'y', ('h', 0)],
                                      4,
                                      aep_cost,
                                      additional_output=[('add_out', 0)])
    tf = TopFarmProblem(dict(zip('xy', initial.T)),
                        cost_comp=cost_comp,
                        constraints=[
                            SpacingConstraint(min_spacing),
                            XYBoundaryConstraint(boundary)
                        ],
                        driver=EasyScipyOptimizeDriver(disp=False),
                        ext_vars={'h': 0})
    cost0, _, _ = tf.optimize(state={'h': 0})
    cost10, _, _ = tf.optimize(state={'h': 10})
    npt.assert_almost_equal(cost10, cost0 - 10)