Exemple #1
0
def measure_tae():
   print "Measuring initial perception of all orientations..."
   before=test_all_orientations(0.0,0.0)
   pylab.figure(figsize=(5,5))
   vectorplot(degrees(before.keys()),  degrees(before.keys()),style="--") # add a dashed reference line
   vectorplot(degrees(before.values()),degrees(before.keys()),\
             title="Initial perceived values for each orientation")

   print "Adapting to pi/2 gaussian at the center of retina for 90 iterations..."
   for p in ["LateralExcitatory","LateralInhibitory","LGNOnAfferent","LGNOffAfferent"]:
      # Value is just an approximate match to bednar:nc00; not calculated directly
      topo.sim["V1"].projections(p).learning_rate = 0.005

   inputs = [pattern.Gaussian(x = 0.0, y = 0.0, orientation = pi/2.0,
                     size=0.088388, aspect_ratio=4.66667, scale=1.0)]
   topo.sim['Retina'].input_generator.generators = inputs
   topo.sim.run(90)


   print "Measuring adapted perception of all orientations..."
   after=test_all_orientations(0.0,0.0)
   before_vals = array(before.values())
   after_vals  = array(after.values())
   diff_vals   = before_vals-after_vals # Sign flipped to match conventions

   pylab.figure(figsize=(5,5))
   pylab.axvline(90.0)
   pylab.axhline(0.0)
   vectorplot(wrap(-90.0,90.0,degrees(diff_vals)),degrees(before.keys()),\
             title="Difference from initial perceived value for each orientation")
Exemple #2
0
def measure_dae(scale=0.6):
   print "Measuring initial perception of all directions..."
   before=test_all_directions(0.0,0.0,scale)
   pylab.figure(figsize=(5,5))
   vectorplot(degrees(before.keys()),  degrees(before.keys()),style="--") # add a dashed reference line
   vectorplot(degrees(before.values()),degrees(before.keys()),\
             title="Initial perceived values for each direction")

   print "Adapting to pi/2 gaussian at the center of retina for 90 iterations..."
   
   for p in ["LateralExcitatory","LateralInhibitory",
             "LGNOnAfferent0","LGNOffAfferent0",
             "LGNOnAfferent1","LGNOffAfferent1",
             "LGNOnAfferent2","LGNOffAfferent2",
             "LGNOnAfferent3","LGNOffAfferent3"]:
      # Value is just an approximate match to bednar:nc00; not calculated directly
      topo.sim["V1"].projections(p).learning_rate = 0.005


##    g = pattern.Gaussian(x=0.0,y=0.0,orientation=pi/2.0,size=0.088388,
##                          aspect_ratio=4.66667,scale=1.0)

   g = pattern.SineGrating(frequency=2.4,phase=0.0,orientation=pi/2,scale=scale)
   for j in range(4):
      topo.sim['Retina%s'%j].set_input_generator(pattern.Sweeper(
         generator=copy.deepcopy(g),
         speed=2.0/24.0,
         step=j))
      
   topo.sim.run(90)

   print "Measuring adapted perception of all directions..."
   after=test_all_directions(0.0,0.0,scale)
   before_vals = array(before.values())
   after_vals  = array(after.values())
   diff_vals   = before_vals-after_vals # Sign flipped to match conventions

   pylab.figure(figsize=(5,5))
   pylab.axvline(180.0)
   pylab.axhline(0.0)
   vectorplot(wrap(-2*90.0,2*90.0,degrees(diff_vals)),degrees(before.keys()),\
             title="Difference from initial perceived value for each direction")