Exemple #1
0
    def setUp(self):
        """
        Repeating above test cases but with delays to determine that delay
        flags reach us.
        Returns
        -------

        """

        self.env = simpy.Environment()
        config = Config(INTEGRATION)
        self.cluster = Cluster(self.env, config)
        self.buffer = Buffer(self.env, self.cluster, config)
        dm = DelayModel(0.9, "normal",
                   DelayModel.DelayDegree.HIGH)
        self.planner = Planner(
            self.env, PLANNING_ALGORITHM,
            self.cluster, SHADOWPlanning('heft',delay_model=dm), delay_model=dm
        )

        self.scheduler = Scheduler(
            self.env, self.buffer, self.cluster, DynamicAlgorithmFromPlan()
        )
        self.telescope = Telescope(
            self.env, config, self.planner, self.scheduler
        )
        self.env.process(self.cluster.run())
        self.env.process(self.buffer.run())
        self.scheduler.start()
        self.env.process(self.scheduler.run())
        self.env.process(self.telescope.run())
Exemple #2
0
    def setUp(self) -> None:
        """
        This test scenario is going to test the edge cases like
        double-allocation that may happen.

        For example - the use of curr_allocs should result in the
        _process_current_schedule not double_allocation, so we will test this.
        Returns
        -------

        """
        self.env = simpy.Environment()
        config = Config(CONFIG)
        sched_algorithm = DynamicAlgorithmFromPlan()

        self.cluster = Cluster(env=self.env, config=config)
        self.telescope = Telescope(self.env,
                                   config,
                                   planner=None,
                                   scheduler=None)
        self.buffer = Buffer(self.env, self.cluster, config)

        self.scheduler = Scheduler(self.env, self.buffer, self.cluster,
                                   sched_algorithm)

        self.observation = self.telescope.observations[0]
        self.machine = self.cluster.machines[0]
Exemple #3
0
    def setUp(self) -> None:
        """
        Create a planner and a `simpy` environment in which to run dummy
        simulations for the purpose of ensuring the planner works nicely
        when selecting 'batch' as a static scheduling method.
        Returns
        -------

        """
        self.env = simpy.Environment()
        config = Config(CONFIG)
        self.model = BatchPlanning('batch')

        self.cluster = Cluster(self.env, config=config)
        self.buffer = Buffer(env=self.env, cluster=self.cluster, config=config)
        self.planner = Planner(
            self.env,
            PLAN_ALGORITHM,
            self.cluster,
            self.model,
        )
        self.telescope = Telescope(self.env,
                                   config,
                                   planner=None,
                                   scheduler=None)
Exemple #4
0
 def setUp(self):
     self.env = simpy.Environment()
     self.config = Config(CONFIG)
     cluster = Cluster(env=self.env, config=self.config)
     buffer = Buffer(env=self.env, cluster=cluster, config=self.config)
     self.scheduler = Scheduler(env=self.env,
                                buffer=buffer,
                                cluster=cluster,
                                algorithm=None)
     planner = Planner(self.env, 'heft', cluster, SHADOWPlanning)
Exemple #5
0
 def testClusterConfigFileExists(self):
     """
     Initialise a Cluster object with the machine config file
     """
     config = Config(CONFIG)
     cluster = Cluster(env=self.env, config=config)
     # This is a homogeneous file, so each flops value should be 95
     for machine in cluster.machines:
         # machine is an object instance of Machine
         self.assertEqual(5040, machine.cpu)
         self.assertEqual(600, machine.bandwidth)
Exemple #6
0
 def setUp(self) -> None:
     self.env = simpy.Environment()
     config = Config(CONFIG)
     self.cluster = Cluster(self.env, config)
     self.buffer = Buffer(self.env, self.cluster, config)
     self.scheduler = Scheduler(self.env, self.buffer, self.cluster,
                                DynamicAlgorithmFromPlan)
     self.planner = Planner(self.env, PLANNING_ALGORITHM, self.cluster,
                            SHADOWPlanning('heft'))
     # planner = None
     self.telescope = Telescope(self.env, config, self.planner,
                                self.scheduler)
Exemple #7
0
    def setUp(self) -> None:
        """
        Setup a cluster and a simulation environment to test ingest pipelines
        """
        self.env = simpy.Environment()
        config = Config(CONFIG)

        self.cluster = Cluster(env=self.env, config=config)
        self.telescope = Telescope(self.env,
                                   config,
                                   planner=None,
                                   scheduler=None)
        self.observation = self.telescope.observations[0]
Exemple #8
0
    def setUp(self) -> None:
        """
        Batch scheduling setup
        """
        self.env = simpy.Environment()
        config = Config(CONFIG)

        self.cluster = Cluster(env=self.env, config=config)
        self.telescope = Telescope(self.env,
                                   config,
                                   planner=None,
                                   scheduler=None)
        self.observation = self.telescope.observations[0]
Exemple #9
0
 def setUp(self):
     self.env = simpy.Environment()
     sched_algorithm = DynamicAlgorithmFromPlan()
     config = Config(LONG_CONFIG)
     self.cluster = Cluster(self.env, config)
     planning_model = SHADOWPlanning(algorithm=PLANNING_ALGORITHM)
     self.planner = Planner(self.env, PLANNING_ALGORITHM, self.cluster,
                            planning_model)
     self.buffer = Buffer(self.env, self.cluster, config)
     self.scheduler = Scheduler(self.env, self.buffer, self.cluster,
                                sched_algorithm)
     self.telescope = Telescope(self.env, config, self.planner,
                                self.scheduler)
Exemple #10
0
    def setUp(self) -> None:
        """
        TODO
        Set up tasks and cluster to attempt allocation of tasks to resources
        """
        self.env = simpy.Environment()
        config = Config(CONFIG)

        self.cluster = Cluster(env=self.env, config=config)
        self.telescope = Telescope(self.env,
                                   config,
                                   planner=None,
                                   scheduler=None)
        self.observation = self.telescope.observations[0]
        self.machine = self.cluster.machines[0]
        self.task = Task('test_0', 0, 2, self.machine, [])
Exemple #11
0
    def setUp(self):
        self.env = simpy.Environment()
        config = Config(INTEGRATION)
        self.cluster = Cluster(self.env, config)
        self.buffer = Buffer(self.env, self.cluster, config)
        self.planner = Planner(self.env, PLANNING_ALGORITHM, self.cluster,
                               SHADOWPlanning('heft'))

        self.scheduler = Scheduler(self.env, self.buffer, self.cluster,
                                   DynamicAlgorithmFromPlan())
        self.telescope = Telescope(self.env, config, self.planner,
                                   self.scheduler)
        self.env.process(self.cluster.run())
        self.env.process(self.buffer.run())
        self.scheduler.start()
        self.env.process(self.scheduler.run())
        self.env.process(self.telescope.run())
Exemple #12
0
 def setUp(self):
     self.env = simpy.Environment()
     config = Config(CONFIG)
     self.model = SHADOWPlanning('heft')
     self.cluster = Cluster(self.env, config=config)
     self.buffer = Buffer(env=self.env, cluster=self.cluster, config=config)
     self.planner = Planner(
         self.env,
         PLAN_ALGORITHM,
         self.cluster,
         self.model,
     )
     self.observation = Observation('planner_observation',
                                    OBS_START_TME,
                                    OBS_DURATION,
                                    OBS_DEMAND,
                                    OBS_WORKFLOW,
                                    data_rate=OBS_DATA_RATE)
Exemple #13
0
 def setUp(self):
     self.env = simpy.Environment()
     sched_algorithm = DynamicAlgorithmFromPlan()
     config = Config(HEFT_CONFIG)
     dm = DelayModel(0.1, "normal")
     self.model = SHADOWPlanning('heft', dm)
     self.cluster = Cluster(self.env, config=config)
     self.buffer = Buffer(self.env, self.cluster, config)
     self.planner = Planner(self.env,
                            PLAN_ALGORITHM,
                            self.cluster,
                            self.model,
                            delay_model=dm)
     self.observation = Observation('planner_observation',
                                    OBS_START_TME,
                                    OBS_DURATION,
                                    OBS_DEMAND,
                                    OBS_WORKFLOW,
                                    data_rate=OBS_DATA_RATE)
Exemple #14
0
    def setUp(self):
        self.algorithm = BatchProcessing
        self.env = simpy.Environment()
        config = Config(CONFIG)
        self.cluster = Cluster(self.env, config=config)
        self.buffer = Buffer(self.env, self.cluster, config)
        self.scheduler = Scheduler(self.env, self.buffer, self.cluster,
                                   DynamicAlgorithmFromPlan())
        self.algorithm = BatchProcessing()
        self.model = BatchPlanning('batch')
        self.planner = Planner(
            self.env,
            'heft',
            self.cluster,
            self.model,
        )

        self.telescope = Telescope(self.env, config, self.planner,
                                   self.scheduler)
Exemple #15
0
    def setUp(self):
        """

        Returns
        -------

        """
        """
        setup the buffer and do config stuff
        :return: Nothing
        """
        self.env = simpy.Environment()
        self.config = Config(CONFIG)
        self.cluster = Cluster(env=self.env, config=self.config)
        self.buffer = Buffer(self.env, self.cluster, self.config)
        self.observation = Observation(
            name='test_observation',
            start=OBS_START_TME,
            duration=OBS_DURATION,
            demand=OBS_DEMAND,
            workflow=OBS_WORKFLOW,
            data_rate=5,
        )
Exemple #16
0
 def setUp(self):
     self.env = simpy.Environment()
     self.config = Config(CONFIG)
     self.cluster = Cluster(env=self.env, config=self.config)
Exemple #17
0
 def setUp(self) -> None:
     self.env = simpy.Environment()
     config = Config(CONFIG)
     self.cluster = Cluster(self.env, config)
     self.buffer = Buffer(self.env, self.cluster, config)
Exemple #18
0
 def setUp(self):
     self.env = simpy.Environment()
     config = Config(CONFIG)
     self.model = SHADOWPlanning('heft')
     self.cluster = Cluster(env=self.env, config=config)
     self.buffer = Buffer(env=self.env, cluster=self.cluster, config=config)
Exemple #19
0
    def __init__(self,
                 env,
                 config,
                 instrument,
                 planning_model,
                 planning_algorithm,
                 scheduling,
                 delay=None,
                 timestamp=None,
                 to_file=False,
                 hdf5_path=None,
                 **kwargs):

        #: :py:obj:`simpy.Environment` object
        self.env = env

        if timestamp:
            #: :py:obj:`~topsim.core.monitor.Monitor` instance
            self.monitor = Monitor(self, timestamp)
            self._timestamp = timestamp
        else:
            sim_start_time = f'{time.time()}'.split('.')[0]
            self._timestamp = sim_start_time
            self.monitor = Monitor(self, sim_start_time)
        # Process necessary config files

        self._cfg_path = config  #: Configuration path

        # Initiaise Actor and Resource objects
        cfg = Config(config)
        #: :py:obj:`~topsim.core.cluster.Cluster` instance
        self.cluster = Cluster(env, cfg)
        #: :py:obj:`~topsim.core.buffer.Buffer` instance
        self.buffer = Buffer(env, self.cluster, cfg)
        planning_algorithm = planning_algorithm
        planning_model = planning_model

        if not delay:
            # TODO Have this approach replicated so we don't specify the
            #  model outside the simulation.
            delay = DelayModel(0.0, "normal", DelayModel.DelayDegree.NONE)
        self.planner = Planner(env, planning_algorithm, self.cluster,
                               planning_model, delay)
        scheduling_algorithm = scheduling()
        #: :py:obj:`~topsim.core.scheduler.Scheduler` instance
        self.scheduler = Scheduler(env, self.buffer, self.cluster,
                                   scheduling_algorithm)
        #: User-defined :py:obj:`~topsim.core.instrument.Instrument` instance
        self.instrument = instrument(env=self.env,
                                     config=cfg,
                                     planner=self.planner,
                                     scheduler=self.scheduler)

        #: :py:obj:`bool` Flag for producing simulation output in a `.pkl`
        # file.
        self.to_file = to_file
        if self.to_file and hdf5_path:
            try:
                if os.path.exists(hdf5_path):
                    LOGGER.warning('Output HDF5 path already exists, '
                                   'simulation appended to existing file')
                self._hdf5_store = pd.HDFStore(hdf5_path)
                self._hdf5_store.close()
            except ValueError(
                    'Check pandas.HDFStore documentation for valid file path'):
                raise
        elif self.to_file and not hdf5_path:
            raise ValueError(
                'Attempted to initialise Simulation object that outputs'
                'to file without providing file path')
        else:
            LOGGER.info(
                'Simulation output will not be stored directly to file')

        if 'delimiters' in kwargs:
            #: Used to separate different simulations in HDF5 output
            self._delimiters = kwargs['delimiters']
        else:
            self._delimiters = ''

        self.running = False