def test_send_recv_any_source(self): rank = dist.get_rank() tensor = _build_tensor(10, value=rank) recv_ranks = set() for dst in range(0, dist.get_world_size()): if dst == rank: # Recv mode for dst in range(0, dist.get_world_size()): if dst == rank: continue output_tensor = _build_tensor(10, value=-1) sender = dist.recv(output_tensor) # Assert the scalar value "sender" that should be # equal to the rank of the sender is equal to all # values in the received tensor. self.assertTrue(output_tensor.eq(sender).all()) recv_ranks.add(sender) else: # Send mode dist.send(tensor, dst) self.assertEqual(len(recv_ranks), dist.get_world_size() - 1) self._barrier()
def test_send_recv(self): rank = dist.get_rank() tensor = _build_tensor(rank + 1) for dest in range(0, dist.get_world_size()): if dest == rank: continue dist.send(tensor, dest) for src in range(0, dist.get_world_size()): if src == rank: continue tensor = _build_tensor(src + 1, value=-1) expected_tensor = _build_tensor(src + 1) dist.recv(tensor, src) self.assertEqual(tensor, expected_tensor) self._barrier()
def test_send_recv_any_source(self): rank = dist.get_rank() tensor = _build_tensor(10, rank) for dest in range(0, dist.get_world_size()): if dest == rank: continue dist.send(tensor, dest) recv_ranks = set() for src in range(0, dist.get_world_size()): if src == rank: continue tensor = _build_tensor(10, value=-1) sender = dist.recv(tensor) self.assertTrue(tensor.eq(sender).all()) recv_ranks.add(sender) self.assertEqual(len(recv_ranks), dist.get_world_size() - 1) self._barrier()
def test_send_recv(self): rank = dist.get_rank() tensor = _build_tensor(rank + 1) for src in range(0, dist.get_world_size()): if src == rank: # Send mode for dst in range(0, dist.get_world_size()): if dst == rank: continue dist.send(tensor, dst) else: # Recv mode expected_tensor = _build_tensor(src + 1) output_tensor = _build_tensor(src + 1, value=-1) dist.recv(output_tensor, src) self.assertEqual(output_tensor, expected_tensor) self._barrier()
def test_irecv(self): rank = dist.get_rank() world_size = dist.get_world_size() if rank == 0: expected_tensors = [_build_tensor(src, -1) for src in range(1, world_size)] requests = [ dist.irecv(expected_tensors[src - 1], src) for src in range(1, world_size) ] for src in range(1, world_size): requests[src - 1].wait() self.assertTrue(requests[src - 1].is_completed()) self.assertEqual(expected_tensors[src - 1], _build_tensor(src, 10)) else: tensor = _build_tensor(rank, 10) dist.send(tensor, 0) self._barrier()