Exemple #1
0
    def KL_phi(self):

        if self.inference == "collapsed":
            return ELBO_collapsed_Categorical(self.qphi_logits,
                                              self.alpha_z,
                                              K=self.n_basis,
                                              N=self.data_dim)

        elif self.inference == "fixed_pi":
            qphi = self.get_phi()
            pi = torch.ones_like(qphi) / self.n_basis
            KL = (qphi * (torch.log(qphi + 1e-16) - torch.log(pi))).sum()
            return KL

        elif self.inference == "non-collapsed":
            qDir = Dirichlet(concentration=self.qalpha_z)
            pDir = Dirichlet(concentration=self.alpha_z)

            # KL(q(pi) || p(pi))
            KL_Dir = torch.distributions.kl_divergence(qDir, pDir)

            # E[log q(phi) - log p(phi | pi)] under q(pi)q(phi)
            qpi = qDir.rsample()
            qphi = self.get_phi()

            # KL categorical
            KL_Cat = (
                qphi *
                (torch.log(qphi + 1e-16) - torch.log(qpi[None, :]))).sum()
            return KL_Dir + KL_Cat
Exemple #2
0
 def forward(self, inputs, labels, topics, lengths, sample_topics=False):
     enc_emb = self.lookup(inputs)
     dec_emb = self.lookup(inputs)
     lab_emb = self.label_lookup(labels).unsqueeze(
         0)  # to match with shape of z
     topics.unsqueeze_(0)
     # prior of z
     mu_pr, logvar_pr = self.z_prior(lab_emb)
     h, _ = self.encoder(enc_emb, lengths)
     if self.is_joint:
         hn = torch.cat([h, topics, lab_emb], dim=2)
     else:
         hn = torch.cat([h, lab_emb], dim=2)
     # posterior of z
     mu_po, logvar_po = self.fcmu(hn), self.fclogvar(hn)
     if self.training:
         z = self.reparameterize(mu_po, logvar_po)
     else:
         z = mu_po
     alphas = self.topic_prior(torch.cat([z, lab_emb], dim=2))
     if sample_topics and not self.is_joint:
         # sampling only valid for marginal model
         dist = Dirichlet((topics * topics.size(2)).cpu())
         topics = dist.rsample().to(alphas.device)
     code = torch.cat([z, topics, lab_emb], dim=2)
     outputs, _ = self.decoder(dec_emb, code, lengths=lengths)
     outputs = self.fcout(outputs)
     bow = self.bow_predictor(torch.cat([z, lab_emb], dim=2))
     return outputs, (mu_pr, mu_po), (logvar_pr, logvar_po), alphas, bow
Exemple #3
0
class Beta(Distribution):
    r"""
    Beta distribution parameterized by `concentration1` and `concentration0`.

    Example::

        >>> m = Beta(torch.Tensor([0.5]), torch.Tensor([0.5]))
        >>> m.sample()  # Beta distributed with concentration concentration1 and concentration0
         0.1046
        [torch.FloatTensor of size 1]

    Args:
        concentration1 (float or Tensor or Variable): 1st concentration parameter of the distribution
            (often referred to as alpha)
        concentration0 (float or Tensor or Variable): 2nd concentration parameter of the distribution
            (often referred to as beta)
    """
    params = {'concentration1': constraints.positive, 'concentration0': constraints.positive}
    support = constraints.unit_interval
    has_rsample = True

    def __init__(self, concentration1, concentration0):
        if isinstance(concentration1, Number) and isinstance(concentration0, Number):
            concentration1_concentration0 = torch.Tensor([concentration1, concentration0])
        else:
            concentration1, concentration0 = broadcast_all(concentration1, concentration0)
            concentration1_concentration0 = torch.stack([concentration1, concentration0], -1)
        self._dirichlet = Dirichlet(concentration1_concentration0)
        super(Beta, self).__init__(self._dirichlet._batch_shape)

    def rsample(self, sample_shape=()):
        value = self._dirichlet.rsample(sample_shape).select(-1, 0)
        if isinstance(value, Number):
            value = self._dirichlet.concentration.new([value])
        return value

    def log_prob(self, value):
        self._validate_log_prob_arg(value)
        heads_tails = torch.stack([value, 1.0 - value], -1)
        return self._dirichlet.log_prob(heads_tails)

    def entropy(self):
        return self._dirichlet.entropy()

    @property
    def concentration1(self):
        result = self._dirichlet.concentration[..., 0]
        if isinstance(result, Number):
            return torch.Tensor([result])
        else:
            return result

    @property
    def concentration0(self):
        result = self._dirichlet.concentration[..., 1]
        if isinstance(result, Number):
            return torch.Tensor([result])
        else:
            return result
Exemple #4
0
class Beta(Distribution):
    r"""
    Creates a Beta distribution parameterized by concentration `alpha` and `beta`.

    Example::

        >>> m = Beta(torch.Tensor([0.5]), torch.Tensor([0.5]))
        >>> m.sample()  # Beta distributed with concentration alpha and beta
         0.1046
        [torch.FloatTensor of size 1]

    Args:
        alpha (float or Tensor or Variable): 1st concentration parameter of the distribution
        beta (float or Tensor or Variable): 2nd concentration parameter of the distribution
    """
    params = {'alpha': constraints.positive, 'beta': constraints.positive}
    support = constraints.unit_interval
    has_rsample = True

    def __init__(self, alpha, beta):
        if isinstance(alpha, Number) and isinstance(beta, Number):
            alpha_beta = torch.Tensor([alpha, beta])
        else:
            alpha, beta = broadcast_all(alpha, beta)
            alpha_beta = torch.stack([alpha, beta], -1)
        self._dirichlet = Dirichlet(alpha_beta)
        super(Beta, self).__init__(self._dirichlet._batch_shape)

    def rsample(self, sample_shape=()):
        value = self._dirichlet.rsample(sample_shape).select(-1, 0)
        if isinstance(value, Number):
            value = self._dirichlet.alpha.new([value])
        return value

    def log_prob(self, value):
        self._validate_log_prob_arg(value)
        heads_tails = torch.stack([value, 1.0 - value], -1)
        return self._dirichlet.log_prob(heads_tails)

    def entropy(self):
        return self._dirichlet.entropy()

    @property
    def alpha(self):
        result = self._dirichlet.alpha[..., 0]
        if isinstance(result, Number):
            return torch.Tensor([result])
        else:
            return result

    @property
    def beta(self):
        result = self._dirichlet.alpha[..., 1]
        if isinstance(result, Number):
            return torch.Tensor([result])
        else:
            return result
    def train(self, x, sampling=True, independent=True):
        '''
        Parameters
        ----------
        x : a batch of data
        sampling : whether to sample from the variational posterior
        distributions(if Ture, the default), or just use the mean of
        the variational distributions
        
        Return
        ------
        log_likehoods : log like hood for each sample
        kl_sum : Sum of the KL divergences between the variational
            distributions and their priors
        '''

        # The variational distributions
        mu = Normal(self.locs, self.scales)
        sigma = Gamma(self.alpha, self.beta)
        theta = Dirichlet(self.couts)

        # Sample from the variational distributions
        if sampling:
            #            Nb = x.shape[0]
            Nb = 1
            mu_sample = mu.rsample((Nb, ))
            sigma_sample = torch.pow(sigma.rsample((Nb, )), -0.5)
            theta_sample = theta.rsample((Nb, ))
        else:
            mu_sample = torch.reshape(mu.mean, (1, self.Nc, self.Nd))
            sigma_sample = torch.pow(
                torch.reshape(sigma.mean, (1, self.Nc, self.Nd)), -0.5)
            theta_sample = torch.reshape(theta.mean, (1, self.Nc))  # 1*Nc

        # The mixture density
        log_var = (sigma_sample**2).log()
        log_likelihoods = GMM.get_likelihoods(x,
                                              mu_sample.reshape(
                                                  (self.Nc, self.Nd)),
                                              log_var.reshape(
                                                  (self.Nc, self.Nd)),
                                              log=True)  # Nc*Nb

        log_prob_ = theta_sample @ log_likelihoods
        log_prob = log_prob_

        # Compute the KL divergence sum
        mu_div = kl_divergence(mu, self.mu_prior)
        sigma_div = kl_divergence(sigma, self.sigma_prior)
        theta_div = kl_divergence(theta, self.theta_prior)
        KL = mu_div + sigma_div + theta_div
        if 0:
            print("mu_div: %f \t sigma_div: %f \t theta_div: %f" %
                  (mu_div.sum().detach().numpy(),
                   sigma_div.sum().detach().numpy(),
                   theta_div.sum().detach().numpy()))
        return KL, log_prob
Exemple #6
0
class Beta(Distribution):
    r"""
    Creates a Beta distribution parameterized by concentration `alpha` and `beta`.

    Example::

        >>> m = Beta(torch.Tensor([0.5]), torch.Tensor([0.5]))
        >>> m.sample()  # Beta distributed with concentrarion alpha
         0.1046
        [torch.FloatTensor of size 2]

    Args:
        alpha (Tensor or Variable): concentration parameter of the distribution
    """
    params = {'alpha': constraints.positive, 'beta': constraints.positive}
    support = constraints.unit_interval
    has_rsample = True

    def __init__(self, alpha, beta):
        if isinstance(alpha, Number) and isinstance(beta, Number):
            alpha_beta = torch.Tensor([alpha, beta])
        else:
            alpha, beta = broadcast_all(alpha, beta)
            alpha_beta = torch.stack([alpha, beta], -1)
        self._dirichlet = Dirichlet(alpha_beta)
        super(Beta, self).__init__(self._dirichlet._batch_shape)

    def rsample(self, sample_shape=()):
        value = self._dirichlet.rsample(sample_shape).select(-1, 0)
        if isinstance(value, Number):
            value = self._dirichlet.alpha.new([value])
        return value

    def log_prob(self, value):
        self._validate_log_prob_arg(value)
        heads_tails = torch.stack([value, 1.0 - value], -1)
        return self._dirichlet.log_prob(heads_tails)

    def entropy(self):
        return self._dirichlet.entropy()
Exemple #7
0
 def forward(self, inputs, topics, lengths, sample_topics=False):
     enc_emb = self.lookup(inputs)
     dec_emb = self.lookup(inputs)
     topics.unsqueeze_(0)
     hn, _ = self.encoder(enc_emb, lengths)
     if self.is_joint:
         hn = torch.cat([hn, topics], dim=2)
     mu, logvar = self.fcmu(hn), self.fclogvar(hn)
     if self.training:
         z = self.reparameterize(mu, logvar)
     else:
         z = mu
     alphas = self.topic_prior(z)
     if sample_topics and not self.is_joint:
         device = topics.device
         dist = Dirichlet((topics * alphas.sum(2, keepdim=True)).cpu())
         topics = dist.rsample().to(device)
     code = torch.cat([z, topics], dim=2)
     outputs, _ = self.decoder(dec_emb, code, lengths=lengths)
     outputs = self.fcout(outputs)
     bow = self.bow_predictor(z).squeeze(0)
     return outputs, mu, logvar, alphas, bow
Exemple #8
0
class Beta(Distribution):
    r"""
    Creates a Beta distribution parameterized by concentration `alpha` and `beta`.

    Example::

        >>> m = Beta(torch.Tensor([0.5]), torch.Tensor([0.5]))
        >>> m.sample()  # Beta distributed with concentrarion alpha
         0.1046
        [torch.FloatTensor of size 2]

    Args:
        alpha (Tensor or Variable): concentration parameter of the distribution
    """
    has_rsample = True

    def __init__(self, alpha, beta):
        if isinstance(alpha, Number) and isinstance(beta, Number):
            alpha_beta = torch.Tensor([alpha, beta])
        else:
            alpha, beta = broadcast_all(alpha, beta)
            alpha_beta = torch.stack([alpha, beta], -1)
        self._dirichlet = Dirichlet(alpha_beta)
        super(Beta, self).__init__(self._dirichlet._batch_shape)

    def rsample(self, sample_shape=()):
        value = self._dirichlet.rsample(sample_shape).select(-1, 0)
        if isinstance(value, Number):
            value = self._dirichlet.alpha.new([value])
        return value

    def log_prob(self, value):
        self._validate_log_prob_arg(value)
        heads_tails = torch.stack([value, 1.0 - value], -1)
        return self._dirichlet.log_prob(heads_tails)

    def entropy(self):
        return self._dirichlet.entropy()
Exemple #9
0
class Beta(ExponentialFamily):
    r"""
    Beta distribution parameterized by `concentration1` and `concentration0`.

    Example::

        >>> m = Beta(torch.tensor([0.5]), torch.tensor([0.5]))
        >>> m.sample()  # Beta distributed with concentration concentration1 and concentration0
         0.1046
        [torch.FloatTensor of size 1]

    Args:
        concentration1 (float or Tensor): 1st concentration parameter of the distribution
            (often referred to as alpha)
        concentration0 (float or Tensor): 2nd concentration parameter of the distribution
            (often referred to as beta)
    """
    arg_constraints = {
        'concentration1': constraints.positive,
        'concentration0': constraints.positive
    }
    support = constraints.unit_interval
    has_rsample = True

    def __init__(self, concentration1, concentration0, validate_args=None):
        if isinstance(concentration1, Number) and isinstance(
                concentration0, Number):
            concentration1_concentration0 = torch.tensor(
                [float(concentration1),
                 float(concentration0)])
        else:
            concentration1, concentration0 = broadcast_all(
                concentration1, concentration0)
            concentration1_concentration0 = torch.stack(
                [concentration1, concentration0], -1)
        self._dirichlet = Dirichlet(concentration1_concentration0)
        super(Beta, self).__init__(self._dirichlet._batch_shape,
                                   validate_args=validate_args)

    @property
    def mean(self):
        return self.concentration1 / (self.concentration1 +
                                      self.concentration0)

    @property
    def variance(self):
        total = self.concentration1 + self.concentration0
        return (self.concentration1 * self.concentration0 / (total.pow(2) *
                                                             (total + 1)))

    def rsample(self, sample_shape=()):
        value = self._dirichlet.rsample(sample_shape).select(-1, 0)
        if isinstance(value, Number):
            value = self._dirichlet.concentration.new_tensor(value)
        return value

    def log_prob(self, value):
        if self._validate_args:
            self._validate_sample(value)
        heads_tails = torch.stack([value, 1.0 - value], -1)
        return self._dirichlet.log_prob(heads_tails)

    def entropy(self):
        return self._dirichlet.entropy()

    @property
    def concentration1(self):
        result = self._dirichlet.concentration[..., 0]
        if isinstance(result, Number):
            return torch.Tensor([result])
        else:
            return result

    @property
    def concentration0(self):
        result = self._dirichlet.concentration[..., 1]
        if isinstance(result, Number):
            return torch.Tensor([result])
        else:
            return result

    @property
    def _natural_params(self):
        return (self.concentration1, self.concentration0)

    def _log_normalizer(self, x, y):
        return torch.lgamma(x) + torch.lgamma(y) - torch.lgamma(x + y)
Exemple #10
0
class Beta(ExponentialFamily):
    r"""
    Beta distribution parameterized by `concentration1` and `concentration0`.

    Example::

        >>> m = Beta(torch.tensor([0.5]), torch.tensor([0.5]))
        >>> m.sample()  # Beta distributed with concentration concentration1 and concentration0
        tensor([ 0.1046])

    Args:
        concentration1 (float or Tensor): 1st concentration parameter of the distribution
            (often referred to as alpha)
        concentration0 (float or Tensor): 2nd concentration parameter of the distribution
            (often referred to as beta)
    """
    arg_constraints = {'concentration1': constraints.positive, 'concentration0': constraints.positive}
    support = constraints.unit_interval
    has_rsample = True

    def __init__(self, concentration1, concentration0, validate_args=None):
        if isinstance(concentration1, Number) and isinstance(concentration0, Number):
            concentration1_concentration0 = torch.tensor([float(concentration1), float(concentration0)])
        else:
            concentration1, concentration0 = broadcast_all(concentration1, concentration0)
            concentration1_concentration0 = torch.stack([concentration1, concentration0], -1)
        self._dirichlet = Dirichlet(concentration1_concentration0)
        super(Beta, self).__init__(self._dirichlet._batch_shape, validate_args=validate_args)

    @property
    def mean(self):
        return self.concentration1 / (self.concentration1 + self.concentration0)

    @property
    def variance(self):
        total = self.concentration1 + self.concentration0
        return (self.concentration1 * self.concentration0 /
                (total.pow(2) * (total + 1)))

    def rsample(self, sample_shape=()):
        value = self._dirichlet.rsample(sample_shape).select(-1, 0)
        if isinstance(value, Number):
            value = self._dirichlet.concentration.new_tensor(value)
        return value

    def log_prob(self, value):
        if self._validate_args:
            self._validate_sample(value)
        heads_tails = torch.stack([value, 1.0 - value], -1)
        return self._dirichlet.log_prob(heads_tails)

    def entropy(self):
        return self._dirichlet.entropy()

    @property
    def concentration1(self):
        result = self._dirichlet.concentration[..., 0]
        if isinstance(result, Number):
            return torch.tensor([result])
        else:
            return result

    @property
    def concentration0(self):
        result = self._dirichlet.concentration[..., 1]
        if isinstance(result, Number):
            return torch.tensor([result])
        else:
            return result

    @property
    def _natural_params(self):
        return (self.concentration1, self.concentration0)

    def _log_normalizer(self, x, y):
        return torch.lgamma(x) + torch.lgamma(y) - torch.lgamma(x + y)
Exemple #11
0
class Beta(Distribution):
    r"""
    Beta distribution parameterized by `concentration1` and `concentration0`.

    Example::

        >>> m = Beta(torch.Tensor([0.5]), torch.Tensor([0.5]))
        >>> m.sample()  # Beta distributed with concentration concentration1 and concentration0
         0.1046
        [torch.FloatTensor of size 1]

    Args:
        concentration1 (float or Tensor or Variable): 1st concentration parameter of the distribution
            (often referred to as alpha)
        concentration0 (float or Tensor or Variable): 2nd concentration parameter of the distribution
            (often referred to as beta)
    """
    params = {'concentration1': constraints.positive, 'concentration0': constraints.positive}
    support = constraints.unit_interval
    has_rsample = True

    def __init__(self, concentration1, concentration0):
        if isinstance(concentration1, Number) and isinstance(concentration0, Number):
            concentration1_concentration0 = variable([concentration1, concentration0])
        else:
            concentration1, concentration0 = broadcast_all(concentration1, concentration0)
            concentration1_concentration0 = torch.stack([concentration1, concentration0], -1)
        self._dirichlet = Dirichlet(concentration1_concentration0)
        super(Beta, self).__init__(self._dirichlet._batch_shape)

    @property
    def mean(self):
        return self.concentration1 / (self.concentration1 + self.concentration0)

    @property
    def variance(self):
        total = self.concentration1 + self.concentration0
        return (self.concentration1 * self.concentration0 /
                (total.pow(2) * (total + 1)))

    def rsample(self, sample_shape=()):
        value = self._dirichlet.rsample(sample_shape).select(-1, 0)
        if isinstance(value, Number):
            value = self._dirichlet.concentration.new([value])
        return value

    def log_prob(self, value):
        self._validate_log_prob_arg(value)
        heads_tails = torch.stack([value, 1.0 - value], -1)
        return self._dirichlet.log_prob(heads_tails)

    def entropy(self):
        return self._dirichlet.entropy()

    @property
    def concentration1(self):
        result = self._dirichlet.concentration[..., 0]
        if isinstance(result, Number):
            return torch.Tensor([result])
        else:
            return result

    @property
    def concentration0(self):
        result = self._dirichlet.concentration[..., 1]
        if isinstance(result, Number):
            return torch.Tensor([result])
        else:
            return result
Exemple #12
0
class Beta(ExponentialFamily):
    r"""
    Beta distribution parameterized by :attr:`concentration1` and :attr:`concentration0`.

    Example::

        >>> # xdoctest: +IGNORE_WANT("non-deterinistic")
        >>> m = Beta(torch.tensor([0.5]), torch.tensor([0.5]))
        >>> m.sample()  # Beta distributed with concentration concentration1 and concentration0
        tensor([ 0.1046])

    Args:
        concentration1 (float or Tensor): 1st concentration parameter of the distribution
            (often referred to as alpha)
        concentration0 (float or Tensor): 2nd concentration parameter of the distribution
            (often referred to as beta)
    """
    arg_constraints = {
        'concentration1': constraints.positive,
        'concentration0': constraints.positive
    }
    support = constraints.unit_interval
    has_rsample = True

    def __init__(self, concentration1, concentration0, validate_args=None):
        if isinstance(concentration1, Real) and isinstance(
                concentration0, Real):
            concentration1_concentration0 = torch.tensor(
                [float(concentration1),
                 float(concentration0)])
        else:
            concentration1, concentration0 = broadcast_all(
                concentration1, concentration0)
            concentration1_concentration0 = torch.stack(
                [concentration1, concentration0], -1)
        self._dirichlet = Dirichlet(concentration1_concentration0,
                                    validate_args=validate_args)
        super(Beta, self).__init__(self._dirichlet._batch_shape,
                                   validate_args=validate_args)

    def expand(self, batch_shape, _instance=None):
        new = self._get_checked_instance(Beta, _instance)
        batch_shape = torch.Size(batch_shape)
        new._dirichlet = self._dirichlet.expand(batch_shape)
        super(Beta, new).__init__(batch_shape, validate_args=False)
        new._validate_args = self._validate_args
        return new

    @property
    def mean(self):
        return self.concentration1 / (self.concentration1 +
                                      self.concentration0)

    @property
    def mode(self):
        return self._dirichlet.mode[..., 0]

    @property
    def variance(self):
        total = self.concentration1 + self.concentration0
        return (self.concentration1 * self.concentration0 / (total.pow(2) *
                                                             (total + 1)))

    def rsample(self, sample_shape=()):
        return self._dirichlet.rsample(sample_shape).select(-1, 0)

    def log_prob(self, value):
        if self._validate_args:
            self._validate_sample(value)
        heads_tails = torch.stack([value, 1.0 - value], -1)
        return self._dirichlet.log_prob(heads_tails)

    def entropy(self):
        return self._dirichlet.entropy()

    @property
    def concentration1(self):
        result = self._dirichlet.concentration[..., 0]
        if isinstance(result, Number):
            return torch.tensor([result])
        else:
            return result

    @property
    def concentration0(self):
        result = self._dirichlet.concentration[..., 1]
        if isinstance(result, Number):
            return torch.tensor([result])
        else:
            return result

    @property
    def _natural_params(self):
        return (self.concentration1, self.concentration0)

    def _log_normalizer(self, x, y):
        return torch.lgamma(x) + torch.lgamma(y) - torch.lgamma(x + y)