Exemple #1
0
def dropout_validate(model, N, validloader):
    model.eval()
    mask_probs = np.ones(600)*0.5
    bern = Bernoulli(torch.from_numpy(mask_probs))
    
    correct = 0
    total = 0
    
    for x, y in validloader:
        
        x = Variable(x, volatile=True).view(-1,784)
        y = Variable(y, volatile=True).view(-1)
        
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        for i in range(N):
            dropout_mask = bern.sample()
            sum_out += F.relu(x*dropout_mask)
        x = sum_out / N        
        outputs = F.Softmax(self.fc3(x)) 
        
        _, predicted = torch.max(outputs.data, 1)
        total += y.size(0)
        correct += (predicted == y).sum()
    
    return correct/total
Exemple #2
0
 def forward(self, in_feat):            # in_feat is the concatenation of Feature_extract.
     # x = nn.MaxPool2d(in_feat, (2, 2), 1)  # can be change
     x = nn.ReLU(self.layer1(in_feat))
     x = nn.Dropout(p=0.5)        # can be change
     x = nn.ReLU(self.layer2(x))
     x = nn.Dropout(p=0.5)
     return F.Softmax(nn.ReLU(self.layer3(x)))
Exemple #3
0
     def forward(self, im_data, im_info, gt_boxes, num_boxes):
      '''
         im_data: input image   --> tensor([B,3,H,W])
         im_info: image origin scale  --> dict{ 'scale' : [P,Q] }
         gt_boxes: ground truth bounding box --> tensor([B,N,4])
                                                [x1,y1,x2,y2]
         num_boxes: bbox number in each image --> list ex. [2,5,3]
     '''         
         batch_size = im_data.size(0)

         fmap = self.backbone(im_data)
         
         rois, rpn_cls, rpn_reg = self.rpn(fmap, im_info, gt_boxes, num_boxes)
         
         roi_feature = self.roi_pool(fmap, rois)
         
         roi_feature = self.fastRCNN(roi_feature)
         
         bbox_pred = self.fastRCNN_reg(roi_feature)
         
         cls_pred = self.fastRCNN_cls(roi_feature)
         cls_pred = F.Softmax(cls_pred, 1)
         
         bbox_pred = bbox_pred.view(batch_size, rois.size(1), -1)
         cls_pred = cls_pred.view(batch_size, rois.size(1), -1)
         
         return bbox_pred, cls_pred, rpn_cls, rpn_reg
Exemple #4
0
    def forward(self, x):
        #dim = dimension
        out = self.conv_module(x)
        dim = 1

        for d in out.size()[1:]:
            dim = dim * d

        out = out.view(-1, dim)
        out = self.fc_module(out)

        return F.Softmax(out, dim=1)
Exemple #5
0
def decompose_uncertainty(predictions, apply_Softmax=False):
    """
    Decomposes the predictive uncertainty into an epistemic and aleatoric part.
    Technique described in Y. Kwon et al, taken from https://openreview.net/pdf?id=Sk_P2Q9sG

    Args:
        predictions: the outputs of the network
        apply_Softmax: bool, whether to apply Softmax to the predictions when unactivated.
    """

    # Softmax usually already done in sample_weights
    if apply_Softmax == True:
        predictions = F.Softmax(predictions, dim=1)

    # Use biased variance because it is equivalent to calculations done by Shridhar
    epistemic_uncertainty = predictions.var(dim=1, unbiased=False)
    aleatoric_uncertainty = (predictions - predictions**2).mean(dim=1)

    return epistemic_uncertainty, aleatoric_uncertainty
    def forward(self,
                encoder_state,
                initial_hidden_state,
                target_sequence,
                sample_probability=0.0):
        """The forward pass of the model
        
        Args:
            encoder_state (torch.Tensor): the output of the NMTEncoder
            initial_hidden_state (torch.Tensor): The last hidden state in the  NMTEncoder
            target_sequence (torch.Tensor): the target text data tensor
        Returns:
            output_vectors (torch.Tensor): prediction vectors at each output step
        """
        if target_sequence is None:
            sample_probability = 1.0
        else:
            target_sequence = target_sequence.permute(1, 0)
            output_sequence_size = target_sequence.size(0)

        #use_sample= np.random.random() < sample_probability
        #if not use_sample:
        #   y_t_index = target_sequence

        # use the provided encoder hidden state as the initial hidden state
        h_t = self.hidden_map(initial_hidden_state)

        batch_size = encoder_state.size(0)
        # initialize context vectors to zeros
        context_vectors = self._init_context_vectors(batch_size)
        # initialize first y_t word as BOS
        y_t_index = self._init_indices(batch_size)

        h_t = h_t.to(encoder_state.device)
        y_t_index = y_t_index.to(encoder_state.device)
        context_vectors = context_vectors.to(encoder_state.device)

        output_vectors = []
        self._cached_p_attn = []
        self._cached_ht = []
        self._cached_decoder_state = encoder_state.cpu().detach().numpy()

        for i in range(output_sequence_size):
            use_sample = np.random.random() < sample_probability
            if not use_sample:
                y_t_index = target_sequence[i]

            # Step 1: Embed word and concat with previous context
            y_input_vector = self.target_embedding(y_t_index)
            rnn_input = torch.cat([y_input_vector, context_vectors], dim=1)

            # Step 2: Make a GRU step, getting a new hidden vector
            h_t = self.gru_cell(rnn_input, h_t)
            self._cached_ht.append(h_t.cpu().detach().numpy())

            # Step 3: Use the current hidden to attend to the encoder state
            context_vectors, p_attn, _ = verbose_attention(
                encoder_state_vectors=encoder_state, query_vector=h_t)

            # auxillary: cache the attention probabilities for visualization
            self._cached_p_attn.append(p_attn.cpu().detach().numpy())

            # Step 4: Use the current hidden and context vectors to make a prediction to the next word
            prediction_vector = torch.cat((context_vectors, h_t), dim=1)
            score_for_y_t_index = self.classifier(
                F.dropout(prediction_vector, 0.3))

            if use_sample:
                p_y_t_index = F.Softmax(score_for_y_t_index *
                                        self._sampling_temperature)
                y_t_index = torch.multinomial(p_y_t_index, 1).squeeze()

            # auxillary: collect the prediction scores
            output_vectors.append(score_for_y_t_index)

        output_vectors = torch.stack(output_vectors).permute(1, 0, 2)

        return output_vectors
Exemple #7
0
        self.dropout = nn.Dropout(p=0.5), #last layer dropout
        self.fc3 = nn.Linear(200, 10), 
        
    def forward(self, x):
<<<<<<< HEAD
        pdb.set_trace()
        x = self.pool(F.relu(self.bn64(self.conv1(x))))
        x = self.pool(F.relu(self.bn64(self.conv2(x))))
        x = self.pool(F.relu(self.bn64(self.conv3(x))))
        x = x.view(-1, 64 * 4 * 4)
=======
>>>>>>> c16ba36044adf45533a207e330a2bc3a5dd77ad4
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = F.relu(self.dropout(x))
        x = F.Softmax(self.fc3(x))
        return x
    


# In[30]:

class CNNa(nn.Module):
    def __init__(self):
        super(CNNa, self).__init__()
        self.conv = nn.Sequential(
            # Layer 1
            nn.Conv2d(in_channels=1, out_channels=16, kernel_size=(3, 3), padding=1),
            nn.Dropout(p=0.5),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=(2, 2), stride=2),
Exemple #8
0
 def forward(self, vec):
     vec = F.relu(self.layer1(vec))
     vec = F.Softmax(self.layer2(vec))
     return vec
Exemple #9
0
    def forward(self, prediction, labels, mask0, mask1):
        """
        Parameters
        ----------
        prediction: predicted affinity matrix
        labels: gt matrix: [B,1,N+1,N+1]
        mask0: [B,1,N+1]
            [True....True,False...False,True] : [0...Nm-1,...N]
        mask1: [B,1,N+1]
            [True....True,False...False,True] : [0...Nn-1,...N]

        Returns
        -------
        loss_pre: Lf=sum(L1*(-log(A1)))/num(L1)
        loss_next: Lb=sum(L2*(-log(A2)))/num(L2)
        loss_similarity: Lc=L4*|A1-A2|
        loss:
            La=sum(L3*(-log(max(A1,A2))))/num(L3)
            loss=(loss_pre + loss_next + loss_a + loss_similarity)/4.0
        accuray_pre: (rowwise_max_of max(A1,A2)[mask] == rowwise_max_of A1[mask])/num(mask)
        accuracy_next:(colwise_max_of max(A1,A2)[mask] == colwise_max_of A1[mask])/num(mask)
        mean_accuray: (accuracy_pre+accuracy_next)/2.0
        index_pre:

        """
        mask_pre = mask0[:, :, :]
        mask_next = mask1[:, :, :]
        mask0 = mask0.unsqueeze(3).repeat(1, 1, 1, self.max_object+1)  # [B,1,N+1,N+1]
        mask1 = mask1.unsqueeze(2).repeat(1, 1, self.max_object+1, 1)  # [B,1,N+1,N+1]
        mask0 = mask0.detach().to(device=self.device)
        mask1 = mask1.detach().to(device=self.device)

        # get valid mask region
        mask_region = (mask0 * mask1).float()   # the valid position mask [B,1,N+1,N+1]
        mask_region_pre = mask_region.clone()
        mask_region_pre[:, :, self.max_object, :] = 0
        mask_region_next = mask_region.clone()
        mask_region_next[:, :, :, self.max_object] = 0
        mask_region_union = mask_region_pre*mask_region_next

        # get A1, A2, max(A1[:N,:N],A2[:N,:N])
        prediction_pre = F.Softmax(mask_region_pre*prediction, dim=3)  # softmax in each row,A1
        prediction_next = F.Softmax(mask_region_next*prediction, dim=2)  # softmax in each col,A2
        prediction_all = prediction_pre.clone() # max(A1[:N,:N],A2[:N,:N])
        prediction_all[:, :, :self.max_object, :self.max_object] =\
            torch.max(prediction_pre, prediction_next)[:, :, :self.max_object, :self.max_object]

        # mask labels and get loss
        labels = labels.float()
        labels_pre = mask_region_pre * labels
        labels_next = mask_region_next * labels
        labels_union = mask_region_union * labels
        labels_num = labels.sum().item()
        labels_num_pre = labels_pre.sum().item()
        labels_num_next = labels_next.sum().item()
        labels_num_union = labels_union.sum().item()

        # Lf=sum(L1*(-log(A1)))/num(L1)
        if labels_num_pre != 0:
            loss_pre = - (labels_pre * torch.log(prediction_pre)).sum() / labels_num_pre
        else:
            loss_pre = - (labels_pre * torch.log(prediction_pre)).sum()

        # Lb=sum(L2*(-log(A2)))/num(L2)
        if labels_num_next != 0:
            loss_next = - (labels_next * torch.log(prediction_next)).sum() / labels_num_next
        else:
            loss_next = - (labels_next * torch.log(prediction_next)).sum()

        # La=sum(L3*(-log(max(A1,A2))))/num(L3)
        if labels_num_pre != 0 and labels_num_next != 0:
            loss = -(labels_pre * torch.log(prediction_all)).sum() / labels_num_pre
        else:
            loss = -(labels_pre * torch.log(prediction_all)).sum()

        # Lc=L4*|A1-A2|
        if labels_num_union != 0:
            loss_similarity = (labels_union * (torch.abs((1-prediction_pre) - (1-prediction_next)))).sum() / labels_num
        else:
            loss_similarity = (labels_union * (torch.abs((1-prediction_pre) - (1-prediction_next)))).sum()

        # (rowwise_max_of max(A1,A2)[mask] == rowwise_max_of A1[mask])/num(mask)
        _, indexes_ = labels_pre.max(3) # max of each row
        indexes_ = indexes_[:, :, :-1]
        _, indexes_pre = prediction_all.max(3)
        indexes_pre = indexes_pre[:, :, :-1]
        mask_pre_num = mask_pre[:, :, :-1].sum().detach().item() # number of valid targets in pre frame
        if mask_pre_num > 0:
            accuracy_pre = (indexes_pre[mask_pre[:, :, :-1]] == indexes_[mask_pre[:,:, :-1]]).float().sum() / mask_pre_num
        else:
            accuracy_pre = (indexes_pre[mask_pre[:, :, :-1]] == indexes_[mask_pre[:, :, :-1]]).float().sum() + 1

        # (colwise_max_of max(A1,A2)[mask] == colwise_max_of A1[mask])/num(mask)
        _, indexes_ = labels_next.max(2) # max of each col
        indexes_ = indexes_[:, :, :-1]
        _, indexes_next = prediction_next.max(2)
        indexes_next = indexes_next[:, :, :-1]
        mask_next_num = mask_next[:, :, :-1].sum().detach().item() # number of valid targets in next frame
        if mask_next_num > 0:
            accuracy_next = (indexes_next[mask_next[:, :, :-1]] == indexes_[mask_next[:, :, :-1]]).float().sum() / mask_next_num
        else:
            accuracy_next = (indexes_next[mask_next[:, :, :-1]] == indexes_[mask_next[:, :, :-1]]).float().sum() + 1

        return loss_pre, loss_next, loss_similarity, \
               (loss_pre + loss_next + loss + loss_similarity)/4.0, \
               accuracy_pre, accuracy_next, (accuracy_pre + accuracy_next)/2.0, indexes_pre
Exemple #10
0
 def select_action(self, state):
     probs = F.Softmax(self.model(Variable(state, volatile=True)) * 7)  #t=7
     action = probs.muntinomial()
     return action.data[0, 0]