Exemple #1
0
    def forward(self, input, target):
        y_true = target.int().unsqueeze(-1)
        same_id = torch.eq(y_true, y_true.t()).type_as(input)

        pos_mask = same_id
        neg_mask = 1 - same_id

        def _mask_max(input_tensor, mask, axis=None, keepdims=False):
            input_tensor = input_tensor - 1e6 * (1 - mask)
            _max, _idx = torch.max(input_tensor, dim=axis, keepdim=keepdims)
            return _max, _idx

        def _mask_min(input_tensor, mask, axis=None, keepdims=False):
            input_tensor = input_tensor + 1e6 * (1 - mask)
            _min, _idx = torch.min(input_tensor, dim=axis, keepdim=keepdims)
            return _min, _idx

        # output[i, j] = || feature[i, :] - feature[j, :] ||_2
        dist_squared = torch.sum(input ** 2, dim=1, keepdim=True) + \
                       torch.sum(input.t() ** 2, dim=0, keepdim=True) - \
                       2.0 * torch.matmul(input, input.t())
        dist = dist_squared.clamp(min=1e-16).sqrt()

        pos_max, pos_idx = _mask_max(dist, pos_mask, axis=-1)
        neg_min, neg_idx = _mask_min(dist, neg_mask, axis=-1)

        # loss(x, y) = max(0, -y * (x1 - x2) + margin)
        y = torch.ones(same_id.size()[0]).to(DEVICE)
        return F.margin_ranking_loss(neg_min.float(),
                                     pos_max.float(),
                                     y,
                                     self.margin,
                                     self.size_average)
    def forward(
        self,
        pos_scores: FloatTensorType,
        neg_scores: FloatTensorType,
        weight: Optional[FloatTensorType],
    ) -> FloatTensorType:
        num_pos = match_shape(pos_scores, -1)
        num_neg = match_shape(neg_scores, num_pos, -1)

        # FIXME Workaround for https://github.com/pytorch/pytorch/issues/15223.
        if num_pos == 0 or num_neg == 0:
            return torch.zeros((),
                               device=pos_scores.device,
                               requires_grad=True)

        if weight is not None:
            match_shape(weight, num_pos)
            loss_per_sample = F.margin_ranking_loss(
                neg_scores,
                pos_scores.unsqueeze(1),
                target=pos_scores.new_full((1, 1), -1, dtype=torch.float),
                margin=self.margin,
                reduction="none",
            )
            loss = (loss_per_sample * weight.unsqueeze(-1)).sum()
        else:
            # more memory efficient way if no weights
            loss = F.margin_ranking_loss(
                neg_scores,
                pos_scores.unsqueeze(1),
                target=pos_scores.new_full((1, 1), -1, dtype=torch.float),
                margin=self.margin,
                reduction="sum",
            )

        return loss
 def forward(self, anchor, positive, negative):
     positive_similarity = F.cosine_similarity(anchor, positive)
     negative_similarity = F.cosine_similarity(anchor, negative)
     labels = torch.ones(positive_similarity.size())
     if self.margin is None:
         diff = 1 - (torch.mean(positive_similarity) -
                     torch.mean(negative_similarity))
         margin = diff.item()
     else:
         margin = self.margin
     loss = F.margin_ranking_loss(positive_similarity,
                                  negative_similarity,
                                  labels.to(anchor.device),
                                  margin=margin)
     return loss
Exemple #4
0
    def forward(self, inputs, targets):
        softmax_out = inputs[0]
        trip_out = inputs[1]

        sf_num = len(softmax_out)
        total_cls_loss = 0
        for i in range(0, sf_num):
            # total_cls_loss += self.xentropy_loss(softmax_out[i],targets)
            total_cls_loss += F.cross_entropy(softmax_out[i], targets)

        trip_num = len(trip_out)
        total_trip_loss = 0
        if self.has_trip:
            for i in range(0, trip_num):
                input_fea = trip_out[i]
                n = input_fea.size(0)
                num_person = n // self.num_instances
                # Compute pairwise distance, replace by the official when merged
                dist = torch.pow(input_fea, 2).sum(1).expand(n, n)
                dist = dist + dist.t()
                dist.addmm_(1, -2, input_fea, input_fea.t())
                dist = dist.clamp(min=1e-12).sqrt()  # for numerical stability
                # For each anchor, find the hardest positive and negative
                mask = targets.expand(n, n).eq(targets.expand(n, n).t())

                dist_ap, dist_an = [], []
                for i in range(n):
                    hard_positive = dist[i][mask[i]].max()
                    dist_ap.append(hard_positive)

                    hard_negative = dist[i][mask[i] == 0].min(0)
                    dist_an.append(hard_negative[0])
                # dist_ap = torch.cat(dist_ap)
                # dist_an = torch.cat(dist_an)
                # Compute ranking hinge loss
                dist_ap = torch.stack(dist_ap)
                dist_an = torch.stack(dist_an)
                y = dist_an.data.new()
                y.resize_as_(dist_an.data)
                y.fill_(1)
                y = Variable(y)
                temp_trip_loss = F.margin_ranking_loss(dist_an, dist_ap, y,
                                                       self.margin1)
                total_trip_loss += temp_trip_loss
        loss = self.gamma * total_cls_loss + self.alpha * total_trip_loss
        accuracy_val, = accuracy(softmax_out[0].data, targets.data)
        prec = accuracy_val[0]
        return loss, prec
Exemple #5
0
    def forward(self, inputs, targets):
        random = torch.randperm(inputs.size(0))
        pred_loss = inputs[random]
        pred_lossi = inputs[:inputs.size(0) // 2]
        pred_lossj = inputs[inputs.size(0) // 2:]
        target_loss = targets.reshape(inputs.size(0), 1)
        target_loss = target_loss[random]
        target_lossi = target_loss[:inputs.size(0) // 2]
        target_lossj = target_loss[inputs.size(0) // 2:]
        final_target = torch.sign(target_lossi - target_lossj)

        return F.margin_ranking_loss(pred_lossi,
                                     pred_lossj,
                                     final_target,
                                     margin=self.margin,
                                     reduction='mean')
Exemple #6
0
class TripletSemihardLoss(nn.Module):   # TriHardLoss
    """
    Shape:
        - Input: :math:`(N, C)` where `C = number of channels`
        - Target: :math:`(N)`
        - Output: scalar.
    """

    def __init__(self, device, margin=0, size_average=True):
        super(TripletSemihardLoss, self).__init__()
        self.margin = margin
        self.size_average = size_average
        self.device = device

    def forward(self, input, target):
        y_true = target.int().unsqueeze(-1) #列扩展
        same_id = torch.eq(y_true, y_true.t()).type_as(input) #比较相等

        pos_mask = same_id
        neg_mask = 1 - same_id

        def _mask_max(input_tensor, mask, axis=None, keepdims=False):  #最远距离的正样本
            input_tensor = input_tensor - 1e6 * (1 - mask)
            _max, _idx = torch.max(input_tensor, dim=axis, keepdim=keepdims)
            return _max, _idx

        def _mask_min(input_tensor, mask, axis=None, keepdims=False):  #最近距离的负样本
            input_tensor = input_tensor + 1e6 * (1 - mask)
            _min, _idx = torch.min(input_tensor, dim=axis, keepdim=keepdims)
            return _min, _idx

        # output[i, j] = || feature[i, :] - feature[j, :] ||_2
        dist_squared = torch.sum(input ** 2, dim=1, keepdim=True) + \    #两向量的距离
                       torch.sum(input.t() ** 2, dim=0, keepdim=True) - \
                       2.0 * torch.matmul(input, input.t())
        dist = dist_squared.clamp(min=1e-16).sqrt()

        pos_max, pos_idx = _mask_max(dist, pos_mask, axis=-1)
        neg_min, neg_idx = _mask_min(dist, neg_mask, axis=-1)

        # loss(x, y) = max(0, -y * (x1 - x2) + margin)
        y = torch.ones(same_id.size()[0]).to(self.device)
        return F.margin_ranking_loss(neg_min.float(),
                                     pos_max.float(),
                                     y,
                                     self.margin,
                                     self.size_average)
Exemple #7
0
    def rank_loss_fn(self, predict, label, margin=0.8, reduction='mean'):
        predict = predict.reshape(-1)
        label = label.reshape(-1)
        pos_mask = label > 0
        pos = predict[pos_mask]
        neg = predict[~pos_mask]
        neg_mask = torch.randint(0,
                                 neg.shape[0], (pos.shape[0], ),
                                 device=label.device)
        neg = neg[neg_mask]

        rank_loss = F.margin_ranking_loss(pos,
                                          neg,
                                          target=torch.ones_like(pos),
                                          margin=margin,
                                          reduction=reduction)
        return {"loss_rank": rank_loss, "loss": rank_loss}
Exemple #8
0
    def unsupervised_train_step(self, data):
        """One training step

        Arguments:
            data {dict of data} -- required keys and values:
                'X' {LongTensor [batch_size, history_len, max_x_sent_len]} -- token ids of context sentences
                'X_floor' {LongTensor [batch_size, history_len]} -- floors of context sentences
                'Y' {LongTensor [batch_size, max_y_sent_len]} -- token ids of negtive-sampling response sentence
                'Y_ref' {LongTensor [batch_size, max_y_sent_len]} -- token ids of reference response sentence
                'Y_floor' {LongTensor [batch_size]} -- floor of response sentence

        Returns:
            dict of data -- returned keys and values
                'loss' {FloatTensor []} -- loss to backword
            dict of statistics -- returned keys and values
                'loss' {float} -- batch loss
        """
        X, Y_neg, Y_ref = data["X"], data["Y"], data["Y_ref"]
        X_floor, Y_floor = data["X_floor"], data["Y_floor"]

        # Forward
        neg_encodings = self._encode_response(Y_neg)
        ref_encodings = self._encode_response(Y_ref)
        ctx_encodings = self._encode_context(X, X_floor, Y_floor)
        neg_unref_metric = self._compute_unref_metric(neg_encodings, ctx_encodings)
        ref_unref_metric = self._compute_unref_metric(ref_encodings, ctx_encodings)

        # Compute loss
        batch_size = X.size(0)
        loss = F.margin_ranking_loss(
            ref_unref_metric,
            neg_unref_metric,
            torch.ones(batch_size).long().to(DEVICE),
            margin=self.margin,
            reduction="mean"
        )

        # return dicts
        ret_data = {
            "loss": loss
        }
        ret_stat = {
            "loss": loss.item()
        }
        return ret_data, ret_stat
Exemple #9
0
def train(epoch):
    print("Epoch", epoch)
    t = time.time()
    model.train(True)
    torch.set_grad_enabled(True)
    eloss = 0
    for batch_idx, instance in enumerate(train_generator):
        pos, neg, pht_bef, ptt_bef, nht_bef, ntt_bef = instance
        pos = pos.to(device)
        neg = neg.to(device)
        # text information
        pht = list(map(lambda x: x.to(device), pht_bef[0:3]))
        ptt = list(map(lambda x: x.to(device), ptt_bef[0:3]))
        nht = list(map(lambda x: x.to(device), nht_bef[0:3]))
        ntt = list(map(lambda x: x.to(device), ntt_bef[0:3]))
        batch_nodes, batch_adj = get_subgraph(pos, train_triple_dict, graph)
        # get relative location according to the batch_nodes
        shifted_pos, shifted_neg = convert_index([pos, neg], batch_nodes)
        batch_nodes = torch.LongTensor(batch_nodes.tolist()).to(device)
        batch_adj = torch.from_numpy(batch_adj).to(device)
        shifted_pos = torch.LongTensor(shifted_pos).to(device)
        shifted_neg = torch.LongTensor(shifted_neg).to(device)
        score_pos = model(batch_nodes, batch_adj, pos, shifted_pos, pht[0],
                          pht[1], pht[2], ptt[0], ptt[1], ptt[2])
        score_neg = model(batch_nodes, batch_adj, neg, shifted_neg, nht[0],
                          nht[1], nht[2], ntt[0], ntt[1], ntt[2])
        loss_train = F.margin_ranking_loss(score_pos,
                                           score_neg,
                                           y,
                                           margin=args.margin)
        sys.stdout.write(
            '%d batches processed. current train batch loss: %f\r' %
            (batch_idx, loss_train.item()))
        eloss += loss_train.item()
        loss_train.backward()
        del batch_nodes, batch_adj, shifted_pos, shifted_neg, pos, neg, pht_bef, ptt_bef, nht_bef, ntt_bef
        optimizer.step()
        if batch_idx % 500 == 0:
            gc.collect()
    print('\n')
    print('Epoch: {:04d}'.format(epoch + 1),
          'loss_train: {:.4f}'.format(eloss / (batch_idx + 1)),
          'time: {:.4f}s'.format(time.time() - t))

    return eloss
Exemple #10
0
    def ranking_loss(self, y_pos, y_neg, margin=1, C=1, average=True):
        """
        Compute loss max margin ranking loss.

        Params:
        -------
        y_pos: vector of size Mx1
            Contains scores for positive samples.

        y_neg: np.array of size Mx1 (binary)
            Contains the true labels.

        margin: float, default: 1
            Margin used for the loss.

        C: int, default: 1
            Number of negative samples per positive sample.

        average: bool, default: True
            Whether to average the loss or just summing it.

        Returns:
        --------
        loss: float
        """
        M = y_pos.size(0)

        y_pos = y_pos.view(-1).repeat(C)  # repeat to match y_neg
        y_neg = y_neg.view(-1)

        # target = [-1, -1, ..., -1], i.e. y_neg should be higher than y_pos
        target = -np.ones(M * C, dtype=np.float32)

        if self.gpu:
            target = Variable(torch.from_numpy(target).cuda())
        else:
            target = Variable(torch.from_numpy(target))

        loss = F.margin_ranking_loss(y_pos,
                                     y_neg,
                                     target,
                                     margin=margin,
                                     size_average=average)

        return loss
Exemple #11
0
    def ranking_loss(self, y_pos, y_neg, margin=1, C=1, energy_based=False, average=True):
        """
        Compute loss max margin ranking loss.

        Params:
        -------
        y_pos: vector of size Mx1
            Contains scores for positive samples.

        y_neg: np.array of size Mx1 (binary)
            Contains the true labels.

        margin: float, default: 1
            Margin used for the loss.

        C: int, default: 1
            Number of negative samples per positive sample.

        energy_based: bool, default: False
            Whether to treat score as energy => minimizing score.

        average: bool, default: True
            Whether to average the loss or just summing it.

        Returns:
        --------
        loss: float
        """
        M = y_pos.size(0)

        y_pos = y_pos.view(-1).repeat(C)  # repeat to match y_neg
        y_neg = y_neg.view(-1)

        target = Variable(torch.ones(M*C))
        target = target.cuda() if self.gpu else target

        if energy_based:
            # target = [-1, ..., -1], i.e. y_neg should be higher than y_pos
            target = -target

        loss = F.margin_ranking_loss(
            y_pos, y_neg, target, margin=margin, size_average=average
        )

        return loss
Exemple #12
0
 def rank_loss_fn(self,
                  pos_index,
                  neg_index,
                  score,
                  margin=0.7,
                  reduction='mean'):
     assert len(score.shape) == 2 and len(pos_index.shape) == 2
     one_idx = pos_index
     zero_idx = neg_index
     zero_mask = torch.randint(0, zero_idx.shape[1], (one_idx.shape[1], ))
     zero_idx = zero_idx[:, zero_mask]
     pos = score[one_idx[0], one_idx[1]]
     neg = score[zero_idx[0], zero_idx[1]]
     rank_loss = F.margin_ranking_loss(pos,
                                       neg,
                                       target=torch.ones_like(pos),
                                       margin=margin,
                                       reduction=reduction)
     return rank_loss
Exemple #13
0
    def _triplet_loss(self, feat_q, targets):
        dist_mat = euclidean_dist(feat_q, self.queue.t())

        N, M = dist_mat.size()
        is_pos = targets.view(N, 1).expand(N, M).eq(self.queue_label.expand(N, M)).float()

        sorted_mat_distance, positive_indices = torch.sort(dist_mat + (-9999999.) * (1 - is_pos), dim=1,
                                                           descending=True)
        dist_ap = sorted_mat_distance[:, 0]
        sorted_mat_distance, negative_indices = torch.sort(dist_mat + 9999999. * is_pos, dim=1,
                                                           descending=False)
        dist_an = sorted_mat_distance[:, 0]

        y = dist_an.new().resize_as_(dist_an).fill_(1)

        loss = F.soft_margin_loss(dist_an - dist_ap, y)
        if loss == float('Inf'): loss = F.margin_ranking_loss(dist_an, dist_ap, y, margin=0.3)

        return loss
Exemple #14
0
    def test_step(self, batch, batch_idx):
        doc_a, doc_b, doc_a_mask, doc_b_mask, label_ids = batch
        #sentence score for 'sentence a' and 'sentence b' are 'phi_a' and 'phi_b' respectively
        phi_a, phi_b = self(doc_a,
                            doc_b,
                            attention_mask_a=doc_a_mask,
                            attention_mask_b=doc_b_mask)
        loss = F.margin_ranking_loss(phi_a,
                                     phi_b,
                                     label_ids,
                                     margin=self.config_args.margin)

        pred_res = -1 * torch.ones_like(label_ids)
        pred_res[(phi_a > phi_b).view(-1)] = 1

        #using testing with validation metric (as train and test runs are different)
        acc = self.test_accuracy(pred_res.long(), label_ids.long())
        pbar = {'test_acc': acc}
        return {'test_loss': loss, 'progress_bar': pbar}
Exemple #15
0
    def validation_step(self, batch, batch_idx):
        doc_a, doc_b, doc_a_mask, doc_b_mask, label_ids = batch
        #sentence score for 'sentence a' and 'sentence b' are 'phi_a' and 'phi_b' respectively
        phi_a, phi_b = self(doc_a,
                            doc_b,
                            attention_mask_a=doc_a_mask,
                            attention_mask_b=doc_b_mask)
        loss = F.margin_ranking_loss(phi_a,
                                     phi_b,
                                     label_ids,
                                     margin=self.config_args.margin)

        pred_res = -1 * torch.ones_like(label_ids)
        pred_res[(phi_a > phi_b).view(-1)] = 1

        #get validation batch accuracy
        acc = self.val_accuracy(pred_res.long(), label_ids.long())
        pbar = {'val_acc': acc}
        return {'val_loss': loss, 'progress_bar': pbar}
Exemple #16
0
    def forward(self, pos_scores: FloatTensorType,
                neg_scores: FloatTensorType) -> FloatTensorType:
        num_pos = match_shape(pos_scores, -1)
        num_neg = match_shape(neg_scores, num_pos, -1)

        # FIXME Workaround for https://github.com/pytorch/pytorch/issues/15223.
        if num_pos == 0 or num_neg == 0:
            return torch.zeros((),
                               device=pos_scores.device,
                               requires_grad=True)

        loss = F.margin_ranking_loss(
            neg_scores,
            pos_scores.unsqueeze(1),
            target=pos_scores.new_full((1, 1), -1, dtype=torch.float),
            margin=self.margin,
            reduction="sum",
        )

        return loss
Exemple #17
0
def margin_ranking_loss(inputs, data, margin=0.1):

	hist = inputs["hist"]
	device = hist.device
	margin_label = data["margin_label"].to(device)
	indices = data['angle_range_label']

	margin_loss = []
	for _hist, _margin_label, idx in zip(hist, margin_label, indices):
		if idx.item() == 255:
			margin_loss.append(0.0)
		else:
			den = _hist[:-1] + _hist[1:]
			x1 = (_hist[:-1] / den)
			x2 = (_hist[1:] / den)
			margin_loss.append(F.margin_ranking_loss(x1, x2, _margin_label, 
				margin=margin,
				reduction="sum"))

	return sum(margin_loss) / len(margin_loss)
Exemple #18
0
    def training_step(self, batch, batch_idx):
        doc_a, doc_b, doc_a_mask, doc_b_mask, label_ids = batch
        #sentence score for 'sentence a' and 'sentence b' are 'phi_a' and 'phi_b' respectively
        phi_a, phi_b = self(doc_a,
                            doc_b,
                            attention_mask_a=doc_a_mask,
                            attention_mask_b=doc_b_mask)
        loss = F.margin_ranking_loss(phi_a,
                                     phi_b,
                                     label_ids,
                                     margin=self.config_args.margin)

        pred_res = -1 * torch.ones_like(label_ids)
        pred_res[phi_a.detach().requires_grad_(False).view(-1) >
                 phi_b.detach().requires_grad_(False).view(-1)] = 1

        #get training batch accuracy
        acc = self.train_accuracy(pred_res.long(), label_ids.long())
        pbar = {'batch_train_acc': acc}
        return {'loss': loss, 'progress_bar': pbar}
Exemple #19
0
 def test_margin_ranking_loss(self):
     inp1 = torch.randn(32,
                        128,
                        device='cuda',
                        dtype=self.dtype,
                        requires_grad=True)
     inp2 = torch.randn(32,
                        128,
                        device='cuda',
                        dtype=self.dtype,
                        requires_grad=True)
     target = (torch.randint(0, 1,
                             (128, ), device='cuda') - 1).type_as(inp1)
     output = F.margin_ranking_loss(inp1,
                                    inp2,
                                    target,
                                    margin=0,
                                    size_average=None,
                                    reduce=None,
                                    reduction='mean')
Exemple #20
0
def val(model, batch_val_pos, aliasTable, device):
    model.eval()
    with torch.no_grad():
        batch_neg_items = aliasTable.draw(NEG_SIZE_RANKING *
                                          batch_val_pos.shape[0])
        #batch_neg_items = randint(low=item_keys.min(), high=item_keys.max() + 1, size = NEG_SIZE_RANKING * batch_val_pos.shape[0])

        val_pos_logits, val_neg_logits = model(batch_val_pos, batch_neg_items)
        target = torch.ones(NEG_SIZE_RANKING * batch_val_pos.shape[0],
                            1).to(device)
        pos = torch.repeat_interleave(val_pos_logits, NEG_SIZE_RANKING, dim=0)
        loss = F.margin_ranking_loss(pos,
                                     val_neg_logits,
                                     target,
                                     margin=LOSS_MARGIN,
                                     reduction='mean')
        HR1, HR3, HR20, HR50, MRR10, MRR20, MRR50, NDCG10, NDCG20, NDCG50 = metrics(
            val_pos_logits, val_neg_logits, training=False)

        return loss.to('cpu').detach().numpy(
        ), HR1, HR3, HR20, HR50, MRR10, MRR20, MRR50, NDCG10, NDCG20, NDCG50
    def forward(self, y_pred: torch.Tensor, y_true: torch.Tensor):
        """
        Calculate rank hinge loss.

        :param y_pred: Predicted result.
        :param y_true: Label.
        :return: Hinge loss computed by user-defined margin.
        """

        y_pos = y_pred[::(self.num_neg + 1), :]
        y_negs = []
        for neg_idx in range(self.num_neg):
            neg = y_pred[(neg_idx + 1)::(self.num_neg + 1), :]
            y_negs.append(neg)
        losses = [
            F.margin_ranking_loss(y_pos,
                                  neg,
                                  torch.ones_like(y_pos),
                                  margin=self.margin) for neg in y_negs
        ]
        return torch.mean(torch.stack(losses))
Exemple #22
0
    def forward(self, y_pred: torch.Tensor, y_true: torch.Tensor):
        """
        Calculate rank hinge loss.

        :param y_pred: Label.
        :param y_true: Predicted result.
        :return: Hinge loss computed by user-defined margin.
        """
        y_pos = y_pred[::(self.num_neg + 1), :]
        y_neg = []
        for neg_idx in range(self.num_neg):
            neg = y_pred[(neg_idx + 1)::(self.num_neg + 1), :]
            y_neg.append(neg)
        y_neg = torch.cat(y_neg, dim=-1)
        y_neg = torch.mean(y_neg, dim=-1, keepdim=True)
        y_true = torch.ones_like(y_pos)
        return F.margin_ranking_loss(y_pos,
                                     y_neg,
                                     y_true,
                                     margin=self.margin,
                                     reduction=self.reduction)
 def forward(self, y_pred: torch.Tensor, y_true: torch.Tensor = None):
     """
     Calculate rank hinge loss
     :param y_pred: 预测结果,二维的,但是只有一个值,也就是最后一维只有一个神经元,这是概率值
     :param y_true: 真实标签值
     :return:
     """
     y_pos = y_pred[::(self.num_neg + 1), :]
     y_neg = []
     for neg_idx in range(self.num_neg):
         neg = y_pred[(neg_idx + 1)::(self.num_neg + 1), :]
         y_neg.append(neg)
     y_neg = torch.cat(y_neg, dim=-1)
     ## 对所有的负例概率求平均
     y_neg = torch.mean(y_neg, dim=-1, keepdim=True)
     y_true = torch.ones_like(y_pos)
     return F.margin_ranking_loss(y_pos,
                                  y_neg,
                                  y_true,
                                  margin=self.margin,
                                  reduction=self.reduction)
Exemple #24
0
    def forward(self, inputs, targets, epoch, original_size, annotation):
        n = inputs.size(0)

        # Compute pairwise distance, replace by the official when merged
        dist = torch.pow(inputs, 2).sum(dim=1, keepdim=True).expand(n, n)
        dist = dist + dist.t()
        dist.addmm_(1, -2, inputs, inputs.t())
        dist = dist.clamp(min=1e-12).sqrt()  # for numerical stability

        def gen_target(dist):
            y = dist.data.new()
            y.resize_as_(dist.data)
            y.fill_(1)
            return Variable(y)

        loss = 0
        for i in range(original_size):
            dist_ap = dist[i][original_size + 2 * i].unsqueeze(0)
            dist_an = dist[i][original_size + 2 * i + 1].unsqueeze(0)
            target = gen_target(dist_ap)
            loss += F.margin_ranking_loss(dist_an, dist_ap, target, margin=annotation[i] * self.margin)

        return loss / original_size
Exemple #25
0
def hinge(pos_score: Dict[EType_canon, torch.Tensor],
          neg_score: Dict[EType_canon, torch.Tensor],
          device: torch.device,
          reduction: str = 'sum',
          max_margin: float = 1e-1) -> torch.Tensor():
    """
    Computes hinge loss.

    Parameters
    ----------
    pos_score : Dict[EType_canon, torch.Tensor]
        From etype to tensor with scores of real edges.
    neg_score
        From etype to tensor with scores of fake edges.
    device : torch.device
        Device on which we compute loss.
    reduction : str
        Type of loss reduction across minibatch ('mean' or 'sum').
    max_margin : float
        Parameter for margin_ranking_loss.

    Returns
    -------
    torch.Tensor
        Loss.

    """
    predicted_pos = torch.cat(list(pos_score.values()))
    predicted_neg = torch.cat(list(neg_score.values()))
    # predicted_pos should be higher than predicted_neg, so target = [1, ..., 1]
    target = torch.ones(len(predicted_pos)).to(device)
    loss = F.margin_ranking_loss(predicted_pos,
                                 predicted_neg,
                                 target,
                                 reduction=reduction,
                                 margin=max_margin)
    return loss
Exemple #26
0
def margin_rank_loss(output, target, sample_size=32, margin=1.0):
    label = target.cpu().numpy()
    pos_indices = []
    neg_indices = []
    for cnt, sublabel in enumerate(mit.sliced(label, sample_size)):
        pos, neg = [], []
        for i, l in enumerate(sublabel):
            i += cnt * sample_size
            if l:
                pos.append(i)
            else:
                neg.append(i)
        len_p = len(pos)
        len_n = len(neg)
        pos_indices.extend([i for i in pos for _ in range(len_n)])
        neg_indices.extend(neg * len_p)

    y = -1 * torch.ones(output[pos_indices, :].shape[0]).to(target.device)
    loss = F.margin_ranking_loss(output[pos_indices, :],
                                 output[neg_indices, :],
                                 y,
                                 margin=margin,
                                 reduction="mean")
    return loss
Exemple #27
0
def test(
    model,
    batch_test_pos,
    aliasTable,
    device,
    DEBUG=False,
):
    model.eval()
    with torch.no_grad():
        batch_neg_items = aliasTable.draw(NEG_SIZE_RANKING *
                                          batch_test_pos.shape[0])
        #batch_neg_items = randint(low=item_keys.min(), high=item_keys.max() + 1, size=NEG_SIZE_RANKING * batch_test_pos.shape[0])

        if not DEBUG:
            test_pos_logits, test_neg_logits = model(batch_test_pos,
                                                     batch_neg_items)
        else:
            test_pos_logits, test_neg_logits,gcn_embedding,gcn_process_user_emb,gcn_process_item_pos_emb,\
            gcn_process_item_neg_emb,user_fin_embed,item_pos_fin_embed,item_neg_fin_embed,user_attention,item_pos_attn,\
            item_neg_attn = model(batch_test_pos, batch_neg_items,DEBUG)
    if not DEBUG:
        target = torch.ones(NEG_SIZE_RANKING * batch_test_pos.shape[0],
                            1).to(device)
        pos = torch.repeat_interleave(test_pos_logits, NEG_SIZE_RANKING, dim=0)
        loss = F.margin_ranking_loss(pos,
                                     test_neg_logits,
                                     target,
                                     margin=LOSS_MARGIN,
                                     reduction='mean')
        HR1, HR3, HR20, HR50, MRR10, MRR20, MRR50, NDCG10, NDCG20, NDCG50 = metrics(
            test_pos_logits, test_neg_logits, training=False)
        return loss.to('cpu').detach().numpy(
        ), HR1, HR3, HR20, HR50, MRR10, MRR20, MRR50, NDCG10, NDCG20, NDCG50
    else:
        return test_pos_logits, test_neg_logits,gcn_embedding,gcn_process_user_emb,gcn_process_item_pos_emb,\
               gcn_process_item_neg_emb,user_fin_embed,item_pos_fin_embed,item_neg_fin_embed,user_attention,item_pos_attn, item_neg_attn
    def configure_criterion(self, y, t):

        criterion = F.cross_entropy(y, t)

        if self.hparams.criterion == "cross_entropy":
            criterion = F.cross_entropy(y, t)
        elif self.hparams.criterion == "binary_cross_entropy":
            criterion = F.binary_cross_entropy(y, t)
        elif self.hparams.criterion == "binary_cross_entropy_with_logits":
            criterion = F.binary_cross_entropy_with_logits(y, t)
        elif self.hparams.criterion == "poisson_nll_loss":
            criterion = F.poisson_nll_loss(y, t)
        elif self.hparams.criterion == "hinge_embedding_loss":
            criterion = F.hinge_embedding_loss(y, t)
        elif self.hparams.criterion == "kl_div":
            criterion = F.kl_div(y, t)
        elif self.hparams.criterion == "l1_loss":
            criterion = F.l1_loss(y, t)
        elif self.hparams.criterion == "mse_loss":
            criterion = F.mse_loss(y, t)
        elif self.hparams.criterion == "margin_ranking_loss":
            criterion = F.margin_ranking_loss(y, t)
        elif self.hparams.criterion == "multilabel_margin_loss":
            criterion = F.multilabel_margin_loss(y, t)
        elif self.hparams.criterion == "multilabel_soft_margin_loss":
            criterion = F.multilabel_soft_margin_loss(y, t)
        elif self.hparams.criterion == "multi_margin_loss":
            criterion = F.multi_margin_loss(y, t)
        elif self.hparams.criterion == "nll_loss":
            criterion = F.nll_loss(y, t)
        elif self.hparams.criterion == "smooth_l1_loss":
            criterion = F.smooth_l1_loss(y, t)
        elif self.hparams.criterion == "soft_margin_loss":
            criterion = F.soft_margin_loss(y, t)

        return criterion
    def forward(self, inputs, targets):
        num_input = len(inputs)
        if num_input == 3 :
            softmax_out = inputs[0]
            trip_out = inputs[1]
            features = inputs[2]
        elif num_input == 6:
            softmax_out = inputs[0]
            trip_out = inputs[1]
            l2_side = inputs[2]
            l3_side = inputs[3]
            l4_side = inputs[4]
            features = inputs[5]

        
        sac_loss = 0
        xentropy = 0
        TripletLoss1 = 0
        TripletLoss2 = 0

        prec = 0
        prec_sf = 0

        if self.config.sac:
            # if self.config.model == 'resnet_channel3':
            #     sac_loss = sac2(l2_side, l3_side, l4_side)
            # else:
            #     sac_loss = sac3(l2_side,l3_side,l4_side)
            sac_loss = sac3(l2_side, l3_side, l4_side)

        num_softmax = len(softmax_out)
        # print(num_softmax)
        for i in range(0,num_softmax):
            xentropy += F.cross_entropy(softmax_out[i], targets)
        prec_sf, = accuracy(softmax_out[0].data, targets.data)
        prec_sf = prec_sf[0]

        num_trip = len(trip_out)
        for i in range(0,num_trip):
            if self.config.trip and not self.config.trip_weight and not self.config.quad and not self.config.rank_loss:
                # dist_ap, dist_an, y = select_triplet_exp(trip_out[i],targets,
                #                                      self.num_instances)
                dist_ap, dist_an, y = select_triplet(trip_out[i],targets,
                                                     self.num_instances)
                TripletLoss1 += F.margin_ranking_loss(dist_an, dist_ap, y, self.margin1)
                prec = (dist_an.data > dist_ap.data).sum().item() * 1. / y.size(0)

            if  self.config.trip_weight and not self.config.trip and not self.config.quad and not self.config.rank_loss:
                normalizer = nn.Softmax()
                dist_ap, dist_an, y = select_triplet_weighted(trip_out[i],targets,
                                                               self.num_instances,
                                                               normalizer,self.config.trip_com,
                                                               self.config.weight_margin, self.config.trip_weight_pos_radius_divide,
                                                               self.config.weight_margin, self.config.trip_weight_neg_radius_divide)
                pdb.set_trace()

                if self.config.trip_com:
                    #### print('Using triplet and triplet-weighted loss')
                    TripletLoss1 += F.margin_ranking_loss(dist_an[0], dist_ap[0], y, self.margin1)
                    TripletLoss2 += F.margin_ranking_loss(dist_an[1], dist_ap[1], y, self.margin2)
                    prec = (dist_an[0].data > dist_ap[0].data).sum().item() * 1. / y.size(0)

                else:
                    #### print('Using triplet-weighted loss')
                    TripletLoss2 += F.margin_ranking_loss(dist_an, dist_ap, y, self.margin2)
                    prec = (dist_an.data > dist_ap.data).sum().item() * 1. / y.size(0)


            if self.config.quad and not self.config.trip_weight and not self.config.trip and not self.config.rank_loss:
                dist_ap, dist_an, dist_ann, y = select_quadruplet(trip_out[i], targets, self.num_instances)
                TripletLoss1 += F.margin_ranking_loss(dist_an, dist_ap, y, self.margin1)
                TripletLoss2 += F.margin_ranking_loss(dist_ann, dist_ap, y, self.margin2)
                prec = (dist_an.data > dist_ap.data).sum().item() * 1. / y.size(0)


            if self.config.rank_loss and not self.config.trip_weight and not self.config.trip and not self.config.quad:
                rank_loss, prec = cal_rank_loss_normalize(trip_out[i], targets, self.num_instances, self.config.margin1)
                TripletLoss1 = rank_loss

        if self.config.sac:
            # pdb.set_trace()
            loss = self.alpha * TripletLoss1 + self.beta * TripletLoss2 + self.gamma * xentropy + self.theta * sac_loss
        else:
            loss = self.alpha * TripletLoss1 + self.beta * TripletLoss2 + self.gamma * xentropy
        # pdb.set_trace()
        prec_batch = max(prec, prec_sf)
        return loss, prec_batch
Exemple #30
0
            score_matrix = score_model(query,
                                       hidden,
                                       query_len,
                                       features,
                                       cross=True)
            score_positive = score_matrix.diag()

            # score_neg1 = score_func(query, features_neg, summary)
            score_neg1 = score_model(query, hidden, query_len, features_neg)
            # score_neg2 = score_func(query_neg, features, summary_neg)
            score_neg2 = score_model(query_neg, hidden_neg, query_neg_len,
                                     features)

            # loss_manual_mining = -F.logsigmoid(score_positive - score_neg1).mean() \
            #                      - F.logsigmoid(score_positive - score_neg2).mean()
            loss_manual_mining = F.margin_ranking_loss(score_positive, score_neg1, target, margin=0.9) \
                   + F.margin_ranking_loss(score_positive, score_neg2, target, margin=0.9)

            loss_hard_mining = contrastive_loss(score_matrix)
            loss = loss_manual_mining + loss_hard_mining  # + 0.5 * loss_gen

            loss.backward()
            optimizer.step()

            distributed.all_reduce(loss_manual_mining.data)
            distributed.all_reduce(loss_hard_mining.data)

            losses_hard_mining += loss_hard_mining.data.item() / len(
                args.devices)
            losses_manual_mining += loss_manual_mining.data.item() / len(
                args.devices)
Exemple #31
0
def triplet_loss(embedding,
                 targets,
                 margin,
                 norm_feat,
                 hard_mining,
                 dist_type,
                 loss_type,
                 domain_labels=None,
                 pos_flag=[1, 0, 0],
                 neg_flag=[0, 0, 1]):
    r"""Modified from Tong Xiao's open-reid (https://github.com/Cysu/open-reid).
    Related Triplet Loss theory can be found in paper 'In Defense of the Triplet
    Loss for Person Re-Identification'."""

    if norm_feat: embedding = normalize(embedding, axis=-1)

    # For distributed training, gather all features from different process.
    if comm.get_world_size() > 1:
        all_embedding = concat_all_gather(embedding)
        all_targets = concat_all_gather(targets)
    else:
        all_embedding = embedding
        all_targets = targets

    if dist_type == 'euclidean':
        dist_mat = euclidean_dist(all_embedding, all_embedding)
    elif dist_type == 'cosine':
        dist_mat = cosine_dist(all_embedding, all_embedding)

    N = dist_mat.size(0)
    if (pos_flag == [1, 0, 0]
            and neg_flag == [0, 1, 1]) or domain_labels == None:
        is_pos = all_targets.view(N, 1).expand(N, N).eq(
            all_targets.view(N, 1).expand(N, N).t())
        is_neg = all_targets.view(N, 1).expand(N, N).ne(
            all_targets.view(N, 1).expand(N, N).t())
    else:
        vec1 = copy.deepcopy(all_targets)
        for i in range(N):
            vec1[i] = i  # [0,1,2,3,4,~~]
        is_same_img = vec1.expand(N, N).eq(vec1.expand(N, N).t())
        is_same_instance = all_targets.view(N, 1).expand(N, N).eq(
            all_targets.view(N, 1).expand(N, N).t())
        is_same_domain = domain_labels.view(N, 1).expand(N, N).eq(
            domain_labels.view(N, 1).expand(N, N).t())

        set0 = is_same_img

        set_all = []
        set_all.extend([is_same_instance * (is_same_img == False)])
        set_all.extend([(is_same_instance == False) * (is_same_domain == True)
                        ])
        set_all.extend([is_same_domain == False])

        is_pos = copy.deepcopy(set0)
        is_neg = copy.deepcopy(set0 == False)
        is_neg[:] = False
        for i, bool_flag in enumerate(pos_flag):
            if bool_flag == 1:
                is_pos += set_all[i]

        for i, bool_flag in enumerate(neg_flag):
            if bool_flag == 1:
                is_neg += set_all[i]

        # print(pos_flag)
        # print(is_pos.type(torch.IntTensor))
        # print(neg_flag)
        # print(is_neg.type(torch.IntTensor))

    if hard_mining:
        dist_ap, dist_an = hard_example_mining(dist_mat, is_pos, is_neg)
    else:
        dist_ap, dist_an = weighted_example_mining(dist_mat, is_pos, is_neg)

    y = dist_an.new().resize_as_(dist_an).fill_(1)

    if margin > 0:
        # all(sum(is_pos) == 1)
        loss = F.margin_ranking_loss(dist_an, dist_ap, y, margin=margin)
    else:
        if loss_type == 'logistic':
            loss = F.soft_margin_loss(dist_an - dist_ap, y)
            # fmt: off
            if loss == float('Inf'):
                loss = F.margin_ranking_loss(dist_an, dist_ap, y, margin=0.3)
            # fmt: on
        elif loss_type == 'hinge':
            loss = F.margin_ranking_loss(dist_an, dist_ap, y, margin=margin)

    return loss