def get_hardest_pos_neg(samples_per_class, identities_per_batch, embeddings):

    l2_dist = PairwiseDistance(2).cuda()
    tot_faces = samples_per_class * identities_per_batch
    dists = []

    for index, embedding in enumerate(embeddings):
        dists.append(list(l2_dist.forward(embedding, embeddings)))

    pos_mask, neg_mask = get_masks(samples_per_class, identities_per_batch)
    pos_mask = torch.tensor(pos_mask).cuda()
    neg_mask = torch.tensor(neg_mask).cuda()
    dists = torch.tensor(dists).cuda()
    pos_dists = torch.mul(dists, pos_mask)
    hardest_pos_dists = torch.max(pos_dists, 1)
    neg_dists = torch.mul(dists, neg_mask)
    neg_dists_nonzero = neg_dists[torch.nonzero(neg_dists, as_tuple=True)]
    neg_dists_nonzero_shape = (tot_faces, tot_faces - samples_per_class)
    neg_dists_nonzero = neg_dists_nonzero.view(neg_dists_nonzero_shape[0],
                                               neg_dists_nonzero_shape[1])
    hardest_neg_dists = torch.min(neg_dists_nonzero, 1)

    hardest_pos_embeddings = embeddings[hardest_pos_dists[1]]
    hardest_neg_embeddings = embeddings[hardest_neg_dists[1]]

    return hardest_pos_embeddings, hardest_neg_embeddings
Exemple #2
0
 def __init__(self, model, criterion, metric_ftns, optimizer, device,
              num_epoch, scheduler, grad_clipping, grad_accumulation_steps,
              early_stopping, validation_frequency, save_period,
              checkpoint_dir, resume_path):
     self.device, device_ids = self._prepare_device(device)
     self.model = model.to(self.device)
     if len(device_ids) > 1:
         self.model = torch.nn.DataParallel(model, device_ids=device_ids)
     self.criterion = criterion
     self.metric_ftns = metric_ftns
     self.optimizer = optimizer
     self.num_epoch = num_epoch
     self.scheduler = scheduler
     self.grad_clipping = grad_clipping
     self.grad_accumulation_steps = grad_accumulation_steps
     self.early_stopping = early_stopping
     self.validation_frequency = validation_frequency
     self.save_period = save_period
     self.checkpoint_dir = checkpoint_dir
     self.start_epoch = 0
     self.best_epoch = 0
     self.best_score = 0
     self.l2_dist = PairwiseDistance(2)
     if resume_path is not None:
         self._resume_checkpoint(resume_path)
     self.train_metrics = MetricTracker('loss')
     self.valid_metrics = MetricTracker(
         'loss', *[m.__name__ for m in self.metric_ftns])
Exemple #3
0
def main():
    lfw_dataroot = args.lfw
    model_path = args.model_path
    far_target = args.far_target

    checkpoint = torch.load(model_path)
    model = Resnet18Triplet(embedding_dimension=checkpoint['embedding_dimension'])
    model.load_state_dict(checkpoint['model_state_dict'])

    flag_gpu_available = torch.cuda.is_available()

    if flag_gpu_available:
        device = torch.device("cuda")
    else:
        device = torch.device("cpu")

    lfw_transforms = transforms.Compose([
        transforms.Resize(size=224),
        transforms.ToTensor(),
        transforms.Normalize(
            mean=[0.5157, 0.4062, 0.3550],
            std=[0.2858, 0.2515, 0.2433]
        )
    ])

    lfw_dataloader = torch.utils.data.DataLoader(
        dataset=LFWDataset(
            dir=lfw_dataroot,
            pairs_path='../datasets/LFW_pairs.txt',
            transform=lfw_transforms
        ),
        batch_size=256,
        num_workers=2,
        shuffle=False
    )

    model.to(device)
    model = model.eval()

    with torch.no_grad():
        l2_distance = PairwiseDistance(2).cuda()
        distances, labels = [], []

        progress_bar = enumerate(tqdm(lfw_dataloader))

        for batch_index, (data_a, data_b, label) in progress_bar:
            data_a, data_b, label = data_a.cuda(), data_b.cuda(), label.cuda()

            output_a, output_b = model(data_a), model(data_b)
            distance = l2_distance.forward(output_a, output_b)  # Euclidean distance

            distances.append(distance.cpu().detach().numpy())
            labels.append(label.cpu().detach().numpy())

        labels = np.array([sublabel for label in labels for sublabel in label])
        distances = np.array([subdist for distance in distances for subdist in distance])

        _, _, _, _, _, _, _, tar, far = evaluate_lfw(distances=distances, labels=labels, far_target=far_target)

        print("TAR: {:.4f}+-{:.4f} @ FAR: {:.4f}".format(np.mean(tar), np.std(tar), np.mean(far)))
Exemple #4
0
class TripletLoss(Function):
  def __init__(self,margin):
    super (TripletLoss,self).__init__()
    self.margin= margin
    self.pdist= PairwiseDistance(2)
  def forward(self,anchor,positive,negative):
    pos_dist = self.pdist.forward(anchor, positive)
    neg_dist = self.pdist.forward(anchor,negative)
    
    hinge_dist = torch.clamp(self.margin+pos_dist-neg_dist,min=0.0)
    loss = torch.mean(hinge_dist)
    return loss
Exemple #5
0
class TripletLoss(torch.nn.Module):

    def __init__(self, margin):
        super(TripletLoss, self).__init__()
        self.margin = margin
        self.pdist = PairwiseDistance(2)
    def forward(self, anchor, positive, negative):
        # [在triplet_loss.py 的 13行位置处,填写代码,完成triplet loss的计算]
        # 法一:
        loss = torch.clamp(self.pdist.forward(anchor, positive)-self.pdist.forward(anchor, negative)+self.margin, 0.0)
        loss = torch.mean(loss)
        
        return loss
Exemple #6
0
 def __init__(self, num_domains, batch_size, k, device):
     super(AdjacencyLayer, self).__init__()
     self.k = k
     self.num_domains = num_domains
     self.batch_size = batch_size
     self.pdist = PairwiseDistance(2, keepdim=False)
     self.device = device
Exemple #7
0
    def findWinning(self, x):
        if self.Units is None:
            val1 = None
            val2 = None
            index1 = None
            index2 = None
        else:
            pdist = PairwiseDistance(p=2)
            if self.cuda:
                distance_vector = pdist(self.Units.cuda(), x.cuda())
                distance_vector.to('cpu')
                # distance_vector = pairwise_distances(self.Units.cuda(), x.cuda())
                # distance_vector.to('cpu')
            else:
                distance_vector = pdist(self.Units, x)
                # distance_vector = pairwise_distances(self.Units, x)
            if self.Units.shape[0] < 2:
                tuples = torch.topk(distance_vector, k=1, largest=False)
                val1 = tuples.values[0]
                index1 = tuples.indices[0]
                val2 = None
                index2 = None
            else:
                tuples = torch.topk(torch.reshape(distance_vector, (-1, )),
                                    k=2,
                                    largest=False)
                val1 = tuples.values[0]
                val2 = tuples.values[1]
                index1 = tuples.indices[0]
                index2 = tuples.indices[1]

        return {'val1': val1, 'index1': index1, 'val2': val2, 'index2': index2}
Exemple #8
0
def compute_global_error(err):
    pdist = PairwiseDistance(p=2)
    # if cuda:
    #     mature_neurons = mature_neurons.cuda()
    #     data = data.cuda()
    # err = pairwise_distances(mature_neurons, data)
    # err = torch.t(torch.stack(err_list, dim=1))
    mean_err = torch.mean(torch.min(err, dim=0, keepdim=True).values)
    return mean_err
Exemple #9
0
class TripletLoss(nn.Module):
    def __init__(self):
        super(TripletLoss, self).__init__()
        self.pdist = PairwiseDistance(2)

    def forward(self, anchor, positive, negative):
        pos_dist = self.pdist.forward(anchor, positive)
        neg_dist = self.pdist.forward(anchor, negative)
        return torch.mean(logistic(neg_dist - pos_dist))
Exemple #10
0
    def __init__(self, input_size: int, dropout: float = None):
        # L2 Distance loss supports compressed streamlines
        super().__init__(input_size,
                         dropout,
                         key='l2-regression',
                         supports_compressed_streamlines=True,
                         loss_description="torch's pairwise distance")

        # Loss will be applied on the last dimension, by default in
        # PairWiseDistance
        self.loss = PairwiseDistance()
Exemple #11
0
    def __init__(self, input_size: int, dropout: float = None):
        # Prepare the dropout, Relu, loop:
        super().__init__(dropout)

        # Layers
        hidden_size = ceil(input_size / 2)
        h1 = Linear(input_size, hidden_size)
        h2 = Linear(hidden_size, 3)
        self.layers = [h1, h2]

        # Loss will be applied on the last dimension, by default in
        # PairWiseDistance
        self.loss = PairwiseDistance()
Exemple #12
0
class Recognition:
    def __init__(self):
        from Models.Resnet34_attention import resnet34 as resnet34_cbam
        model_path = os.path.join(pwd, 'Model_training_checkpoints')
        self.model = resnet34_cbam(pretrained=True,
                                   showlayer=False,
                                   num_classes=128)
        device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        x = [
            int(i.split('_')[4]) for i in os.listdir(model_path)
            if version in i
        ]
        x.sort()
        for i in os.listdir(model_path):
            if (len(x) != 0) and ('epoch_' + str(x[-1]) in i) and (version
                                                                   in i):
                model_pathi = os.path.join(model_path, i)
                break
        model_pathi = os.path.join(model_path, 'model_34_triplet_mask.pt')
        print(model_path)

        if os.path.exists(model_pathi) and (version in model_pathi):
            if torch.cuda.is_available():
                model_state = torch.load(model_pathi)
            else:
                model_state = torch.load(model_pathi, map_location='cpu')
                start_epoch = model_state['epoch']
                print('loaded %s' % model_pathi)
        else:
            print('模型不存在!')
            sys.exit(0)

        if torch.cuda.is_available():
            self.model = self.model.cuda()

        self.l2_distance = PairwiseDistance(2).cuda()

        self.is_same = False

    def detect(self, img1, img2, threshhold):
        img1 = img1.cuda()
        img2 = img2.cuda()
        output1, output2 = self.model(img1), self.model(img2)
        output1 = torch.div(output1, torch.norm(output1))
        output2 = torch.div(output2, torch.norm(output2))
        distance = self.l2_distance.forward(output1, output2)

        if distance < threshhold:
            self.is_same = True

        return self.is_same
Exemple #13
0
    def __init__(self):
        from Models.Resnet34_attention import resnet34 as resnet34_cbam
        model_path = os.path.join(pwd, 'Model_training_checkpoints')
        self.model = resnet34_cbam(pretrained=True,
                                   showlayer=False,
                                   num_classes=128)
        device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        x = [
            int(i.split('_')[4]) for i in os.listdir(model_path)
            if version in i
        ]
        x.sort()
        for i in os.listdir(model_path):
            if (len(x) != 0) and ('epoch_' + str(x[-1]) in i) and (version
                                                                   in i):
                model_pathi = os.path.join(model_path, i)
                break
        model_pathi = os.path.join(model_path, 'model_34_triplet_mask.pt')
        print(model_path)

        if os.path.exists(model_pathi) and (version in model_pathi):
            if torch.cuda.is_available():
                model_state = torch.load(model_pathi)
            else:
                model_state = torch.load(model_pathi, map_location='cpu')
                start_epoch = model_state['epoch']
                print('loaded %s' % model_pathi)
        else:
            print('模型不存在!')
            sys.exit(0)

        if torch.cuda.is_available():
            self.model = self.model.cuda()

        self.l2_distance = PairwiseDistance(2).cuda()

        self.is_same = False
Exemple #14
0
class ContrastiveLoss(torch.nn.Module):

    def __init__(self, margin=1):
        super(ContrastiveLoss, self).__init__()
        self.margin = margin
        self.pdist = PairwiseDistance(2)

    def forward(self, output1, output2, label):
        l2_dist = self.pdist.forward(output1, output2)
        l2_dist = l2_dist.float()
        label = label.float()
        loss_contrastive = torch.mean(label * torch.pow(l2_dist, 2) +
                                      (1-label) * torch.pow(torch.clamp(self.margin - l2_dist, min=0.0), 2))

        return loss_contrastive
Exemple #15
0
 def compute_cosine_matrix(self, A, B):
     similarity = CosineSimilarity()
     similarity = PairwiseDistance()
     print(A.size(), B.size())
     num_A, _ = A.size()
     num_B, _ = B.size()
     _matrix = np.zeros((num_A, num_B))
     for i in range(num_A):
         vA = A[i, :].unsqueeze(0)
         vA = vA.cuda()
         for j in range(num_B):
             vB = B[j, :].unsqueeze(0)
             vB = vB.cuda()
             value = similarity(vA, vB)
             # print(value)
             _matrix[i, j] = value.item()
     return _matrix
Exemple #16
0
def pairwise_distances(x, y, cuda=False):
    """
    Input: x is a Nxd matrix
           y is an Mxd matrix
    Output: dist is a NxM (Nx1 with the 0-axis sum) matrix where dist[i,j] is the square norm between x[i,:] and y[j,:]
            if y is not given then use 'y=x'.
    i.e. dist[i,j] = ||x[i,:]-y[j,:]||^2
    """
    if cuda:
        x = x.cuda()
        y = y.cuda()
    pdist = PairwiseDistance(p=2)
    err_list = []
    for xi in x:
        err_list.append(pdist(y, xi))
    err = torch.t(torch.stack(err_list, dim=1))

    return err
Exemple #17
0
    def __init__(self, p, q, metric=PairwiseDistance(p=2)):
        if set(p.var) != set(q.var):
            raise ValueError(
                "The two distribution variables must be the same.")

        if len(p.var) != 1:
            raise ValueError(
                "A given distribution must have only one variable.")

        super().__init__(p, q)

        if len(p.input_var) > 0:
            self.input_dist = p
        elif len(q.input_var) > 0:
            self.input_dist = q
        else:
            raise NotImplementedError()

        self.metric = metric
class TripletLoss(torch.autograd.Function):

    def __init__(self, margin):
        super(TripletLoss, self).__init__()
        self.margin = margin
        self.pdist  = PairwiseDistance(2)

    def forward(self, anchor, positive, negative):
        """
        :param anchor:     samples embedding from source domain. n x d: n is sample number, d is dimension
        :param positive:   hard positives
        :param negative:   hard negatives
        :return:
        """
        pos_dist   = self.pdist.forward(anchor, positive)
        neg_dist   = self.pdist.forward(anchor, negative)

        hinge_dist = torch.clamp(self.margin + pos_dist - neg_dist, min = 0.0) # Clamp all elements in input into the range [ 0.0, self.margin + pos_dist - neg_dist ] and return a resulting tensor
        loss       = torch.mean(hinge_dist)
        return loss
Exemple #19
0
    def __init__(self,
                 module: nn.Module,
                 model_name: str,
                 sub_folder: str,
                 hyperparamters: dict,
                 optimizer,
                 gesture_list: list,
                 callbacks: list,
                 train_split=CVSplit(cv=0.1, random_state=0)):
        device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        super(SiameseEMG, self).__init__(
            module,
            criterion=nn.TripletMarginLoss,
            optimizer=optimizer,
            lr=hyperparamters['lr'],
            max_epochs=hyperparamters['epoch'],
            train_split=train_split,
            callbacks=callbacks,
            device=device,
            iterator_train__shuffle=True,
            iterator_train__num_workers=4,
            iterator_train__batch_size=hyperparamters['train_batch_size'],
            iterator_valid__shuffle=False,
            iterator_valid__num_workers=4,
            iterator_valid__batch_size=hyperparamters['valid_batch_size'])
        self.model_name = model_name
        self.hyperparamters = hyperparamters
        self.distance = PairwiseDistance().to(self.device)
        self.model_path = generate_folder('checkpoints',
                                          model_name,
                                          sub_folder=sub_folder)

        self.clf = KNeighborsClassifier(n_neighbors=5)
        self.clf_fit = False
        self.anchors = []
        self.labels = []

        print('build a new model, init parameters of {}'.format(model_name))
        param_dict = self.load_pretrained("pretrained_end_params.pt")
        self.module.load_state_dict(param_dict)
Exemple #20
0
# 模型加载
model = Resnet18Triplet(pretrained=False, embedding_dimension=128)
if torch.cuda.is_available():
    model.cuda()
    print('Using single-gpu testing.')

model_pathi = "../week21/Model_training_checkpoints/model_resnet18_triplet_epoch_603.pt"
if os.path.exists(model_pathi):
    model_state = torch.load(model_pathi)
    model.load_state_dict(model_state['model_state_dict'])
    start_epoch = model_state['epoch']
    print('loaded %s' % model_pathi)
else:
    print('不存在预训练模型!')

l2_distance = PairwiseDistance(2)
with torch.no_grad():  # 不传梯度了
    distances, labels = [], []
    progress_bar = enumerate(tqdm(test_dataloader))  # track bar
    for batch_index, (data_a, data_b, label) in progress_bar:
        #for batch_index, (data_a, data_b, label) in enumerate(test_dataloader):
        # data_a, data_b, label这仨是一批的矩阵
        data_a = data_a.cuda()
        data_b = data_b.cuda()
        label = label.cuda()
        output_a, output_b = model(data_a), model(data_b)
        output_a = torch.div(output_a, torch.norm(output_a))
        output_b = torch.div(output_b, torch.norm(output_b))
        distance = l2_distance.forward(output_a, output_b)
        # 列表里套矩阵
        labels.append(label.cpu().detach().numpy())
Exemple #21
0
def train_triplet(start_epoch, end_epoch, epochs, train_dataloader,
                  lfw_dataloader, lfw_validation_epoch_interval, model,
                  model_architecture, optimizer_model, embedding_dimension,
                  batch_size, margin, flag_train_multi_gpu, optimizer,
                  learning_rate):

    for epoch in range(start_epoch, end_epoch):
        flag_validate_lfw = (epoch +
                             1) % lfw_validation_epoch_interval == 0 or (
                                 epoch + 1) % epochs == 0
        triplet_loss_sum = 0
        num_valid_training_triplets = 0
        l2_distance = PairwiseDistance(2)

        # Training pass
        model.train()
        progress_bar = enumerate(tqdm(train_dataloader))

        for batch_idx, (batch_sample) in progress_bar:

            # Forward pass - compute embeddings
            anc_imgs = batch_sample['anc_img']
            pos_imgs = batch_sample['pos_img']
            neg_imgs = batch_sample['neg_img']

            anc_embeddings, pos_embeddings, neg_embeddings, model, optimizer_model, flag_use_cpu = forward_pass(
                anc_imgs=anc_imgs,
                pos_imgs=pos_imgs,
                neg_imgs=neg_imgs,
                model=model,
                optimizer_model=optimizer_model,
                batch_idx=batch_idx,
                optimizer=optimizer,
                learning_rate=learning_rate,
                use_cpu=False)

            # Forward pass - choose hard negatives only for training
            pos_dists = l2_distance.forward(anc_embeddings, pos_embeddings)
            neg_dists = l2_distance.forward(anc_embeddings, neg_embeddings)

            all = (neg_dists - pos_dists < margin).cpu().numpy().flatten()

            hard_triplets = np.where(all == 1)
            if len(hard_triplets[0]) == 0:
                continue

            anc_hard_embeddings = anc_embeddings[hard_triplets]
            pos_hard_embeddings = pos_embeddings[hard_triplets]
            neg_hard_embeddings = neg_embeddings[hard_triplets]

            # Calculate triplet loss
            triplet_loss = TripletLoss(margin=margin).forward(
                anchor=anc_hard_embeddings,
                positive=pos_hard_embeddings,
                negative=neg_hard_embeddings)

            # Calculating loss
            triplet_loss_sum += triplet_loss.item()
            num_valid_training_triplets += len(anc_hard_embeddings)

            # Backward pass
            optimizer_model.zero_grad()
            triplet_loss.backward()
            optimizer_model.step()

            # Load model and optimizer back to GPU if CUDA Out of Memory Exception occured and model and optimizer
            #  were switched to CPU
            if flag_use_cpu:
                # According to https://github.com/pytorch/pytorch/issues/2830#issuecomment-336183179
                #  In order for the optimizer to keep training the model after changing to a different type or device,
                #  optimizers have to be recreated, 'load_state_dict' can be used to restore the state from a
                #  previous copy. As such, the optimizer state dict will be saved first and then reloaded when
                #  the model's device is changed.

                # Load back to CUDA
                torch.save(
                    optimizer_model.state_dict(),
                    'model_training_checkpoints/out_of_memory_optimizer_checkpoint/optimizer_checkpoint.pt'
                )

                model = model.cuda()

                optimizer_model = set_optimizer(optimizer=optimizer,
                                                model=model,
                                                learning_rate=learning_rate)

                optimizer_model.load_state_dict(
                    torch.load(
                        'model_training_checkpoints/out_of_memory_optimizer_checkpoint/optimizer_checkpoint.pt'
                    ))

                # Copied from https://github.com/pytorch/pytorch/issues/2830#issuecomment-336194949
                # No optimizer.cuda() available, this is the way to make an optimizer loaded with cpu tensors load
                #  with cuda tensors.
                for state in optimizer_model.state.values():
                    for k, v in state.items():
                        if torch.is_tensor(v):
                            state[k] = v.cuda()

                # Ensure model is correctly set to be trainable
                model.train()

        # Model only trains on hard negative triplets
        avg_triplet_loss = 0 if (
            num_valid_training_triplets
            == 0) else triplet_loss_sum / num_valid_training_triplets

        # Print training statistics and add to log
        print(
            'Epoch {}:\tAverage Triplet Loss: {:.4f}\tNumber of valid training triplets in epoch: {}'
            .format(epoch + 1, avg_triplet_loss, num_valid_training_triplets))
        with open('logs/{}_log_triplet.txt'.format(model_architecture),
                  'a') as f:
            val_list = [
                epoch + 1, avg_triplet_loss, num_valid_training_triplets
            ]
            log = '\t'.join(str(value) for value in val_list)
            f.writelines(log + '\n')

        try:
            # Plot Triplet losses plot
            plot_triplet_losses(
                log_dir="logs/{}_log_triplet.txt".format(model_architecture),
                epochs=epochs,
                figure_name="plots/triplet_losses_{}.png".format(
                    model_architecture))
        except Exception as e:
            print(e)

        # Evaluation pass on LFW dataset
        if flag_validate_lfw:
            best_distances = validate_lfw(
                model=model,
                lfw_dataloader=lfw_dataloader,
                model_architecture=model_architecture,
                epoch=epoch,
                epochs=epochs)

        # Save model checkpoint
        state = {
            'epoch': epoch + 1,
            'embedding_dimension': embedding_dimension,
            'batch_size_training': batch_size,
            'model_state_dict': model.state_dict(),
            'model_architecture': model_architecture,
            'optimizer_model_state_dict': optimizer_model.state_dict()
        }

        # For storing data parallel model's state dictionary without 'module' parameter
        if flag_train_multi_gpu:
            state['model_state_dict'] = model.module.state_dict()

        # For storing best euclidean distance threshold during LFW validation
        if flag_validate_lfw:
            state['best_distance_threshold'] = np.mean(best_distances)

        # Save model checkpoint
        torch.save(
            state,
            'model_training_checkpoints/model_{}_triplet_epoch_{}.pt'.format(
                model_architecture, epoch + 1))
Exemple #22
0
def validate_lfw(model, lfw_dataloader, model_architecture, epoch, epochs):
    model.eval()
    with torch.no_grad():
        l2_distance = PairwiseDistance(2).cuda()
        distances, labels = [], []

        print("Validating on LFW! ...")
        progress_bar = enumerate(tqdm(lfw_dataloader))

        for batch_index, (data_a, data_b, label) in progress_bar:
            data_a, data_b, label = data_a.cuda(), data_b.cuda(), label.cuda()

            output_a, output_b = model(data_a), model(data_b)
            distance = l2_distance.forward(output_a,
                                           output_b)  # Euclidean distance

            distances.append(distance.cpu().detach().numpy())
            labels.append(label.cpu().detach().numpy())

        labels = np.array([sublabel for label in labels for sublabel in label])
        distances = np.array(
            [subdist for distance in distances for subdist in distance])

        true_positive_rate, false_positive_rate, precision, recall, accuracy, roc_auc, best_distances, \
        tar, far = evaluate_lfw(
            distances=distances,
            labels=labels,
            far_target=1e-3
        )
        # Print statistics and add to log
        print(
            "Accuracy on LFW: {:.4f}+-{:.4f}\tPrecision {:.4f}+-{:.4f}\tRecall {:.4f}+-{:.4f}\t"
            "ROC Area Under Curve: {:.4f}\tBest distance threshold: {:.2f}+-{:.2f}\t"
            "TAR: {:.4f}+-{:.4f} @ FAR: {:.4f}".format(np.mean(accuracy),
                                                       np.std(accuracy),
                                                       np.mean(precision),
                                                       np.std(precision),
                                                       np.mean(recall),
                                                       np.std(recall), roc_auc,
                                                       np.mean(best_distances),
                                                       np.std(best_distances),
                                                       np.mean(tar),
                                                       np.std(tar),
                                                       np.mean(far)))
        with open('logs/lfw_{}_log_triplet.txt'.format(model_architecture),
                  'a') as f:
            val_list = [
                epoch + 1,
                np.mean(accuracy),
                np.std(accuracy),
                np.mean(precision),
                np.std(precision),
                np.mean(recall),
                np.std(recall), roc_auc,
                np.mean(best_distances),
                np.std(best_distances),
                np.mean(tar)
            ]
            log = '\t'.join(str(value) for value in val_list)
            f.writelines(log + '\n')

    try:
        # Plot ROC curve
        plot_roc_lfw(
            false_positive_rate=false_positive_rate,
            true_positive_rate=true_positive_rate,
            figure_name="plots/roc_plots/roc_{}_epoch_{}_triplet.png".format(
                model_architecture, epoch + 1))
        # Plot LFW accuracies plot
        plot_accuracy_lfw(
            log_dir="logs/lfw_{}_log_triplet.txt".format(model_architecture),
            epochs=epochs,
            figure_name="plots/lfw_accuracies_{}_triplet.png".format(
                model_architecture))
    except Exception as e:
        print(e)

    return best_distances
 def __init__(self, margin):
     super(TripletLoss, self).__init__()
     self.margin = margin
     self.pdist = PairwiseDistance(2)
def main():
    dataroot = args.dataroot
    lfw_dataroot = args.lfw
    training_dataset_csv_path = args.training_dataset_csv_path
    epochs = args.epochs
    iterations_per_epoch = args.iterations_per_epoch
    model_architecture = args.model_architecture
    pretrained = args.pretrained
    embedding_dimension = args.embedding_dimension
    num_human_identities_per_batch = args.num_human_identities_per_batch
    batch_size = args.batch_size
    lfw_batch_size = args.lfw_batch_size
    resume_path = args.resume_path
    num_workers = args.num_workers
    optimizer = args.optimizer
    learning_rate = args.learning_rate
    margin = args.margin
    image_size = args.image_size
    use_semihard_negatives = args.use_semihard_negatives
    training_triplets_path = args.training_triplets_path
    flag_training_triplets_path = False
    start_epoch = 0

    if training_triplets_path is not None:
        flag_training_triplets_path = True  # Load triplets file for the first training epoch

    # Define image data pre-processing transforms
    #   ToTensor() normalizes pixel values between [0, 1]
    #   Normalize(mean=[0.6071, 0.4609, 0.3944], std=[0.2457, 0.2175, 0.2129]) according to the calculated glint360k
    #   dataset with tightly-cropped faces dataset RGB channels' mean and std values by
    #   calculate_glint360k_rgb_mean_std.py in 'datasets' folder.
    data_transforms = transforms.Compose([
        transforms.Resize(size=image_size),
        transforms.RandomHorizontalFlip(),
        transforms.RandomRotation(degrees=5),
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.6071, 0.4609, 0.3944],
                             std=[0.2457, 0.2175, 0.2129])
    ])

    lfw_transforms = transforms.Compose([
        transforms.Resize(size=image_size),
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.6071, 0.4609, 0.3944],
                             std=[0.2457, 0.2175, 0.2129])
    ])

    lfw_dataloader = torch.utils.data.DataLoader(dataset=LFWDataset(
        dir=lfw_dataroot,
        pairs_path='datasets/LFW_pairs.txt',
        transform=lfw_transforms),
                                                 batch_size=lfw_batch_size,
                                                 num_workers=num_workers,
                                                 shuffle=False)

    # Instantiate model
    model = set_model_architecture(model_architecture=model_architecture,
                                   pretrained=pretrained,
                                   embedding_dimension=embedding_dimension)

    # Load model to GPU or multiple GPUs if available
    model, flag_train_multi_gpu = set_model_gpu_mode(model)

    # Set optimizer
    optimizer_model = set_optimizer(optimizer=optimizer,
                                    model=model,
                                    learning_rate=learning_rate)

    # Resume from a model checkpoint
    if resume_path:
        if os.path.isfile(resume_path):
            print("Loading checkpoint {} ...".format(resume_path))
            checkpoint = torch.load(resume_path)
            start_epoch = checkpoint['epoch'] + 1
            optimizer_model.load_state_dict(
                checkpoint['optimizer_model_state_dict'])

            # In order to load state dict for optimizers correctly, model has to be loaded to gpu first
            if flag_train_multi_gpu:
                model.module.load_state_dict(checkpoint['model_state_dict'])
            else:
                model.load_state_dict(checkpoint['model_state_dict'])
            print("Checkpoint loaded: start epoch from checkpoint = {}".format(
                start_epoch))
        else:
            print(
                "WARNING: No checkpoint found at {}!\nTraining from scratch.".
                format(resume_path))

    if use_semihard_negatives:
        print("Using Semi-Hard negative triplet selection!")
    else:
        print("Using Hard negative triplet selection!")

    start_epoch = start_epoch

    print("Training using triplet loss starting for {} epochs:\n".format(
        epochs - start_epoch))

    for epoch in range(start_epoch, epochs):
        num_valid_training_triplets = 0
        l2_distance = PairwiseDistance(p=2)
        _training_triplets_path = None

        if flag_training_triplets_path:
            _training_triplets_path = training_triplets_path
            flag_training_triplets_path = False  # Only load triplets file for the first epoch

        # Re-instantiate training dataloader to generate a triplet list for this training epoch
        train_dataloader = torch.utils.data.DataLoader(
            dataset=TripletFaceDataset(
                root_dir=dataroot,
                training_dataset_csv_path=training_dataset_csv_path,
                num_triplets=iterations_per_epoch * batch_size,
                num_human_identities_per_batch=num_human_identities_per_batch,
                triplet_batch_size=batch_size,
                epoch=epoch,
                training_triplets_path=_training_triplets_path,
                transform=data_transforms),
            batch_size=batch_size,
            num_workers=num_workers,
            shuffle=
            False  # Shuffling for triplets with set amount of human identities per batch is not required
        )

        # Training pass
        model.train()
        progress_bar = enumerate(tqdm(train_dataloader))

        for batch_idx, (batch_sample) in progress_bar:

            # Forward pass - compute embeddings
            anc_imgs = batch_sample['anc_img']
            pos_imgs = batch_sample['pos_img']
            neg_imgs = batch_sample['neg_img']

            # Concatenate the input images into one tensor because doing multiple forward passes would create
            #  weird GPU memory allocation behaviours later on during training which would cause GPU Out of Memory
            #  issues
            all_imgs = torch.cat(
                (anc_imgs, pos_imgs,
                 neg_imgs))  # Must be a tuple of Torch Tensors

            anc_embeddings, pos_embeddings, neg_embeddings, model = forward_pass(
                imgs=all_imgs, model=model, batch_size=batch_size)

            pos_dists = l2_distance.forward(anc_embeddings, pos_embeddings)
            neg_dists = l2_distance.forward(anc_embeddings, neg_embeddings)

            if use_semihard_negatives:
                # Semi-Hard Negative triplet selection
                #  (negative_distance - positive_distance < margin) AND (positive_distance < negative_distance)
                #   Based on: https://github.com/davidsandberg/facenet/blob/master/src/train_tripletloss.py#L295
                first_condition = (neg_dists - pos_dists <
                                   margin).cpu().numpy().flatten()
                second_condition = (pos_dists <
                                    neg_dists).cpu().numpy().flatten()
                all = (np.logical_and(first_condition, second_condition))
                valid_triplets = np.where(all == 1)
            else:
                # Hard Negative triplet selection
                #  (negative_distance - positive_distance < margin)
                #   Based on: https://github.com/davidsandberg/facenet/blob/master/src/train_tripletloss.py#L296
                all = (neg_dists - pos_dists < margin).cpu().numpy().flatten()
                valid_triplets = np.where(all == 1)

            anc_valid_embeddings = anc_embeddings[valid_triplets]
            pos_valid_embeddings = pos_embeddings[valid_triplets]
            neg_valid_embeddings = neg_embeddings[valid_triplets]

            # Calculate triplet loss
            triplet_loss = TripletLoss(margin=margin).forward(
                anchor=anc_valid_embeddings,
                positive=pos_valid_embeddings,
                negative=neg_valid_embeddings)

            # Calculating number of triplets that met the triplet selection method during the epoch
            num_valid_training_triplets += len(anc_valid_embeddings)

            # Backward pass
            optimizer_model.zero_grad()
            triplet_loss.backward()
            optimizer_model.step()

        # Print training statistics for epoch and add to log
        print(
            'Epoch {}:\tNumber of valid training triplets in epoch: {}'.format(
                epoch, num_valid_training_triplets))

        with open('logs/{}_log_triplet.txt'.format(model_architecture),
                  'a') as f:
            val_list = [epoch, num_valid_training_triplets]
            log = '\t'.join(str(value) for value in val_list)
            f.writelines(log + '\n')

        # Evaluation pass on LFW dataset
        best_distances = validate_lfw(model=model,
                                      lfw_dataloader=lfw_dataloader,
                                      model_architecture=model_architecture,
                                      epoch=epoch)

        # Save model checkpoint
        state = {
            'epoch': epoch,
            'embedding_dimension': embedding_dimension,
            'batch_size_training': batch_size,
            'model_state_dict': model.state_dict(),
            'model_architecture': model_architecture,
            'optimizer_model_state_dict': optimizer_model.state_dict(),
            'best_distance_threshold': np.mean(best_distances)
        }

        # For storing data parallel model's state dictionary without 'module' parameter
        if flag_train_multi_gpu:
            state['model_state_dict'] = model.module.state_dict()

        # Save model checkpoint
        torch.save(
            state,
            'model_training_checkpoints/model_{}_triplet_epoch_{}.pt'.format(
                model_architecture, epoch))
Exemple #25
0
dataset_loader = DataLoader(dataset,
                            batch_size=10,
                            shuffle=False,
                            num_workers=4)

ImageIds = []
for x in dataset.imgs:
    ImageIds.append(x[0][-20:-4])
ImageId = pd.DataFrame(ImageIds)
ImageId.columns = ['ImageId']
labels = ImageId.merge(labels_init, on='ImageId')

# In[ ]:

EPSILON = 8 / 255 * (1 - -1)
l2dist = PairwiseDistance(2)
criterion_none = nn.CrossEntropyLoss(reduction='none')
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(),
                      lr=0.001,
                      momentum=0.9,
                      weight_decay=5e-4)
# attacks
bim_attack = Attack(net, F.cross_entropy)
cw_attack = cw.L2Adversary(targeted=False,
                           confidence=0.9,
                           search_steps=10,
                           box=(-1, 1),
                           optimizer_lr=0.001)

# In[ ]:
Exemple #26
0
    for param_group in optimizer.param_groups:  # 调整学习率
        param_group['lr'] = lr


lr = 0.125
optimizer_model = torch.optim.Adagrad(model.parameters(),
                                      lr=lr,
                                      lr_decay=1e-4,
                                      weight_decay=0)

# 打卡时间、epoch
start_epoch = 0
total_time_start = time.time()
end_epoch = start_epoch + 300
# 导入l2计算的
l2_distance = PairwiseDistance(2)
# 为了打日志先预制个最低auc和最佳acc在前头
best_roc_auc = -1
best_accuracy = -1

# epoch大循环
for epoch in range(start_epoch, end_epoch):
    print("\ntraining on TrainDataset! ...")
    epoch_time_start = time.time()
    triplet_loss_sum = 0
    sample_num = 0

    model.train()  # 训练模式
    # step小循环
    progress_bar = enumerate(tqdm(train_dataloader))
data_transforms = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
])

train_dataloader = DataLoader(dataset=VGGFace2Dataset(
    training_triplets_path=triplets_path,
    data_dir=data_directory,
    transform=data_transforms),
                              batch_size=1,
                              shuffle=False)

net = Recog_Net()
net.cuda()
margin = 0.05
l2_distance = PairwiseDistance(2).cuda()

optimizer_model = SGD(net.parameters(), lr=0.1)

for epoch in range(0, 2):
    triplet_loss_sum = 0
    num_valid_training_triplets = 0
    progress_bar = enumerate(tqdm(train_dataloader))
    for batch_idx, (batch_sample) in progress_bar:
        anc_image = batch_sample['anc_img'].view(-1, 3, 220, 220).cuda()
        pos_image = batch_sample['pos_img'].view(-1, 3, 220, 220).cuda()
        neg_image = batch_sample['neg_img'].view(-1, 3, 220, 220).cuda()

        anc_embedding = net(anc_image)
        pos_embedding = net(pos_image)
        neg_embedding = net(neg_image)
Exemple #28
0
    def __init__(self, num_domains, batch_size):
        super(DistanceLayer, self).__init__()

        self.num_domains = num_domains
        self.batch_size = batch_size
        self.pdist = PairwiseDistance(2)
Exemple #29
0
 def __init__(self, margin=1):
     super(ContrastiveLoss, self).__init__()
     self.margin = margin
     self.pdist = PairwiseDistance(2)
def train_triplet(start_epoch, end_epoch, epochs, train_dataloader,
                  lfw_dataloader, lfw_validation_epoch_interval, model,
                  model_architecture, optimizer_model, embedding_dimension,
                  batch_size, margin, flag_train_multi_gpu, optimizer,
                  learning_rate, use_semihard_negatives):

    for epoch in range(start_epoch, end_epoch):
        flag_validate_lfw = (epoch +
                             1) % lfw_validation_epoch_interval == 0 or (
                                 epoch + 1) % epochs == 0
        triplet_loss_sum = 0
        num_valid_training_triplets = 0
        l2_distance = PairwiseDistance(p=2)

        # Training pass
        model.train()
        progress_bar = enumerate(tqdm(train_dataloader))

        for batch_idx, (batch_sample) in progress_bar:
            # Skip last iteration to avoid the problem of having different number of tensors while calculating
            #  pairwise distances (sizes of tensors must be the same for pairwise distance calculation)
            if batch_idx + 1 == len(train_dataloader):
                continue

            # Forward pass - compute embeddings
            anc_imgs = batch_sample['anc_img']
            pos_imgs = batch_sample['pos_img']
            neg_imgs = batch_sample['neg_img']

            # Concatenate the input images into one tensor because doing multiple forward passes would create
            #  weird GPU memory allocation behaviours later on during training which would cause GPU Out of Memory
            #  issues
            all_imgs = torch.cat(
                (anc_imgs, pos_imgs,
                 neg_imgs))  # Must be a tuple of Torch Tensors

            anc_embeddings, pos_embeddings, neg_embeddings, model, optimizer_model, flag_use_cpu = forward_pass(
                imgs=all_imgs,
                model=model,
                optimizer_model=optimizer_model,
                batch_idx=batch_idx,
                optimizer=optimizer,
                learning_rate=learning_rate,
                batch_size=batch_size,
                use_cpu=False)

            pos_dists = l2_distance.forward(anc_embeddings, pos_embeddings)
            neg_dists = l2_distance.forward(anc_embeddings, neg_embeddings)

            if use_semihard_negatives:
                # Semi-Hard Negative triplet selection
                #  (negative_distance - positive_distance < margin) AND (positive_distance < negative_distance)
                #   Based on: https://github.com/davidsandberg/facenet/blob/master/src/train_tripletloss.py#L295

                first_condition = (neg_dists - pos_dists <
                                   margin).cpu().numpy().flatten()
                second_condition = (pos_dists <
                                    neg_dists).cpu().numpy().flatten()
                all = (np.logical_and(first_condition, second_condition))

                semihard_negative_triplets = np.where(all == 1)
                if len(semihard_negative_triplets[0]) == 0:
                    continue

                anc_valid_embeddings = anc_embeddings[
                    semihard_negative_triplets]
                pos_valid_embeddings = pos_embeddings[
                    semihard_negative_triplets]
                neg_valid_embeddings = neg_embeddings[
                    semihard_negative_triplets]

                del anc_embeddings, pos_embeddings, neg_embeddings, pos_dists, neg_dists
                gc.collect()

            else:
                # Hard Negative triplet selection
                #  (negative_distance - positive_distance < margin)
                #   Based on: https://github.com/davidsandberg/facenet/blob/master/src/train_tripletloss.py#L296

                all = (neg_dists - pos_dists < margin).cpu().numpy().flatten()

                hard_negative_triplets = np.where(all == 1)
                if len(hard_negative_triplets[0]) == 0:
                    continue

                anc_valid_embeddings = anc_embeddings[hard_negative_triplets]
                pos_valid_embeddings = pos_embeddings[hard_negative_triplets]
                neg_valid_embeddings = neg_embeddings[hard_negative_triplets]

                del anc_embeddings, pos_embeddings, neg_embeddings, pos_dists, neg_dists
                gc.collect()

            # Calculate triplet loss
            triplet_loss = TripletLoss(margin=margin).forward(
                anchor=anc_valid_embeddings,
                positive=pos_valid_embeddings,
                negative=neg_valid_embeddings)

            # Calculating loss and number of triplets that met the triplet selection method during the epoch
            triplet_loss_sum += triplet_loss.item()
            num_valid_training_triplets += len(anc_valid_embeddings)

            # Backward pass
            optimizer_model.zero_grad()
            triplet_loss.backward()
            optimizer_model.step()

            # Load model and optimizer back to GPU if CUDA Out of Memory Exception occurred and model and optimizer
            #  were switched to CPU
            if flag_use_cpu:
                # According to https://github.com/pytorch/pytorch/issues/2830#issuecomment-336183179
                #  In order for the optimizer to keep training the model after changing to a different type or device,
                #  optimizers have to be recreated, 'load_state_dict' can be used to restore the state from a
                #  previous copy. As such, the optimizer state dict will be saved first and then reloaded when
                #  the model's device is changed.
                torch.cuda.empty_cache()

                # Print number of valid triplets (troubleshooting out of memory causes)
                print("Number of valid triplets during OOM iteration = {}".
                      format(len(anc_valid_embeddings)))

                torch.save(
                    optimizer_model.state_dict(),
                    'model_training_checkpoints/out_of_memory_optimizer_checkpoint/optimizer_checkpoint.pt'
                )

                # Load back to CUDA
                model.cuda()

                optimizer_model = set_optimizer(optimizer=optimizer,
                                                model=model,
                                                learning_rate=learning_rate)

                optimizer_model.load_state_dict(
                    torch.load(
                        'model_training_checkpoints/out_of_memory_optimizer_checkpoint/optimizer_checkpoint.pt'
                    ))

                # Copied from https://github.com/pytorch/pytorch/issues/2830#issuecomment-336194949
                # No optimizer.cuda() available, this is the way to make an optimizer loaded with cpu tensors load
                #  with cuda tensors.
                for state in optimizer_model.state.values():
                    for k, v in state.items():
                        if torch.is_tensor(v):
                            state[k] = v.cuda()

            # Clear some memory at end of training iteration
            del triplet_loss, anc_valid_embeddings, pos_valid_embeddings, neg_valid_embeddings
            gc.collect()

        # Model only trains on triplets that fit the triplet selection method
        avg_triplet_loss = 0 if (
            num_valid_training_triplets
            == 0) else triplet_loss_sum / num_valid_training_triplets

        # Print training statistics and add to log
        print(
            'Epoch {}:\tAverage Triplet Loss: {:.4f}\tNumber of valid training triplets in epoch: {}'
            .format(epoch + 1, avg_triplet_loss, num_valid_training_triplets))

        with open('logs/{}_log_triplet.txt'.format(model_architecture),
                  'a') as f:
            val_list = [
                epoch + 1, avg_triplet_loss, num_valid_training_triplets
            ]
            log = '\t'.join(str(value) for value in val_list)
            f.writelines(log + '\n')

        try:
            # Plot Triplet losses plot
            plot_triplet_losses(
                log_dir="logs/{}_log_triplet.txt".format(model_architecture),
                epochs=epochs,
                figure_name="plots/triplet_losses_{}.png".format(
                    model_architecture))
        except Exception as e:
            print(e)

        # Evaluation pass on LFW dataset
        if flag_validate_lfw:
            best_distances = validate_lfw(
                model=model,
                lfw_dataloader=lfw_dataloader,
                model_architecture=model_architecture,
                epoch=epoch,
                epochs=epochs)

        # Save model checkpoint
        state = {
            'epoch': epoch + 1,
            'embedding_dimension': embedding_dimension,
            'batch_size_training': batch_size,
            'model_state_dict': model.state_dict(),
            'model_architecture': model_architecture,
            'optimizer_model_state_dict': optimizer_model.state_dict()
        }

        # For storing data parallel model's state dictionary without 'module' parameter
        if flag_train_multi_gpu:
            state['model_state_dict'] = model.module.state_dict()

        # For storing best euclidean distance threshold during LFW validation
        if flag_validate_lfw:
            state['best_distance_threshold'] = np.mean(best_distances)

        # Save model checkpoint
        torch.save(
            state,
            'model_training_checkpoints/model_{}_triplet_epoch_{}.pt'.format(
                model_architecture, epoch + 1))