def __init__(self, encoder, dropout_rate=0.5) -> None: super().__init__() self.encoder = encoder_params[encoder]["init_op"]() self.avg_pool = AdaptiveAvgPool2d((1, 1)) self.srm_conv = setup_srm_layer(3) self.dropout = Dropout(dropout_rate) self.fc = Linear(encoder_params[encoder]["features"], 1)
def __init__(self, encoder, dropout_rate=0.0,out_dim=56) -> None: super().__init__() self.encoder = encoder_params[encoder]["init_op"]() self.avg_pool = AdaptiveAvgPool2d((1, 1)) self.dropout = Dropout(dropout_rate) self.out_dim = out_dim self.fc = Linear(encoder_params[encoder]["features"], out_dim)
def __init__(self, encoder, name='', dropout_rate=0.0) -> None: super().__init__() self.name = name self.encoder = encoder_params[encoder]["init_op"]() self.avg_pool = AdaptiveAvgPool2d((1, 1)) self.dropout = Dropout(dropout_rate) self.fc = Linear(encoder_params[encoder]["features"], 1)
def __init__(self, encoder, nclasses, dropout_rate=0.0, infer = False) -> None: super().__init__() self.encoder = encoder_params[encoder]["init_op"]() self.avg_pool = AdaptiveAvgPool2d((1, 1)) self.dropout = Dropout(dropout_rate) self.fc = Linear(encoder_params[encoder]["features"], nclasses) self.infer = infer
def __init__(self, encoder, dropout_rate=0.5) -> None: super().__init__() self.decoder = Decoder(decoder_filters=encoder_params[encoder]["decoder_filters"], filters=encoder_params[encoder]["filters"]) self.avg_pool = AdaptiveAvgPool2d((1, 1)) self.dropout = Dropout(dropout_rate) self.fc = Linear(encoder_params[encoder]["features"], 1) self.final = Conv2d(encoder_params[encoder]["decoder_filters"][0], out_channels=1, kernel_size=1, bias=False) _initialize_weights(self) self.encoder = encoder_params[encoder]["init_op"]()
def __init__(self, encoder, sample_rate, window_size, hop_size, mel_bins, fmin, fmax, classes_num): super().__init__() window = 'hann' center = True pad_mode = 'reflect' ref = 1.0 amin = 1e-10 top_db = None # Spectrogram extractor self.spectrogram_extractor = Spectrogram(n_fft=window_size, hop_length=hop_size, win_length=window_size, window=window, center=center, pad_mode=pad_mode, freeze_parameters=True) # Logmel feature extractor self.logmel_extractor = LogmelFilterBank(sr=sample_rate, n_fft=window_size, n_mels=mel_bins, fmin=fmin, fmax=fmax, ref=ref, amin=amin, top_db=top_db, freeze_parameters=True) # Spec augmenter self.spec_augmenter = SpecAugmentation(time_drop_width=64, time_stripes_num=2, freq_drop_width=8, freq_stripes_num=2) self.encoder = encoder_params[encoder]["init_op"]() self.avg_pool = AdaptiveAvgPool2d((1, 1)) #self.max_pool = AdaptiveMaxPool2d((1, 1)) self.dropout = Dropout(0.3) self.fc = Linear(encoder_params[encoder]['features'], classes_num)
def __init__(self, encoder, dropout_rate=0.0): super().__init__() self.encoder = encoder_params[encoder]["base_net"]() self.avg_pool = AdaptiveAvgPool2d((1, 1)) self.dropout = Dropout(dropout_rate) self.fc = Linear(encoder_params[encoder]["features"], 1)
def __init__(self, encoder, encoder_features, dropout_rate=0.0): super().__init__() self.encoder = encoder self.avg_pool = AdaptiveAvgPool2d((1, 1)) self.dropout = Dropout(dropout_rate) self.fc = Linear(encoder_features, 1)