class CNN(nn.Module): def __init__(nn.Module): super(CNN, self).__init__(self, n_classes) self.features = nn.Sequential( nn.Conv2d(3, 64, kernel_size = 11, stride = 4, padding = 2), nn.ReLU(), nn.Maxpool2d(kernel_size = 3, stride = 2), nn.Conv2d(64, 192, kernel_size = 3, padding = 1), nn.ReLU(), nn.Maxpool2d(kernel_size = 3, stride = 2), nn.Conv2d(192, 256, kernel_size = 3, padding = 1), nn.ReLU(), nn.Maxpool2d(kernel_size = 3, stride = 2), nn.Conv2d(256, 256, kernel_size = 3, padding = 1), nn.ReLU(), nn.Maxpool2d(kernel_size = 3, stride = 2), ) self.avgpool = nn.AdaptiveAvegPool2d((6,6)) self.classifier = nn.Sequential( nn.Dropout(), nn.Linear(256*6*6, 4096) nn.ReLU(), nn.Dropout(), nn.Linear(4096, 4096), nn.ReLU(), nn.Linear(4096, n_classes) )
def __init__(self): super(LeNet, self).__init__() layer1 = nn.Sequential() layer1.add_module('conv1', nn.Conv2d(1, 6, 3, padding=1)) layer1.add_module('pool1', nn.Maxpool2d(2, 2)) self.layer1 = layer1 layer2 = nn.Sequential() layer2.add_module('conv2', nn.Conv2d(6, 16, 5)) layer2.add_module('pool2', nn.Maxpool2d(2, 2)) self.layer2 = layer2 layer3 = nn.Sequential() layer3.add_module('fc1', nn.Linear(400, 120)) layer3.add_module('fc2', nn.Linear(120, 84)) layer3.add_module('fc3', nn.Linear(84, 10)) self.layer3 = layer3 def forward(self, x): x = self.layer1(x) x = self.layer2(x) x = x.view(x.size(0), -1) x = self.layer3(x) return x
def create_stem(channels): stem = nn.Sequential() stem.add_module('conv1', conv_bn_relu(in_channels=3, out_channels=channels[0], kernel_size=11, stride=4, padding=2)) stem.add_module('maxpool1', nn.Maxpool2d(kernel_size=3, stride=2)) stem.add_module('conv2', conv_bn_relu(in_channels=channels[0], out_channels=channels[1], kernel_size=5, padding=2)) stem.add_module('maxpool2', nn.Maxpool2d(kernel_size=3, stride=2)) stem.add_module('conv3', conv_bn_relu(in_channels=channels[1], out_channels=channels[2], kernel_size=3, padding=1)) stem.add_module('conv4', conv_bn_relu(in_channels=channels[2], out_channels=channels[3], kernel_size=3, padding=1)) stem.add_module('conv5', conv_bn_relu(in_channels=channels[3], out_channels=channels[4], kernel_size=3, padding=1)) stem.add_module('maxpool3', nn.Maxpool2d(kernel_size=3, stride=2)) return stem
def __init__(self, h, m, k, n, hidden_size): super().__init__() self.h = h # filter length self.m = m # filter width self.k = k # phoneme vector size self.n = n # word length self.p = k - h + 1 self.q = n - m + 1 self.stride = 2 self.conv_1 = nn.Conv2d(in_channels=1, out_channels=self.p*self.q, kernel_size=(h, m)) self.conv_2 = nn.Conv2d(in_channels=self.p*self.q, out_channels=self.p*self.q, kernel_size=(h, m)) self.conv_3 = nn.Conv2d(in_channels=self.p*self.q, out_channels=self.p*self.q, kernel_size=(h, m)) self.maxpool = nn.Maxpool2d((self.p, self.q), stride=self.stride) self.manhattan = ef.manhattan_distance self.input_layer = nn.Linear(7, hidden_size) self.hidden_1 = nn.Linear(hidden_size, hidden_size) self.hidden_2 = nn.Linear(hidden_size, hidden_size) self.hidden_3 = nn.Linear(hidden_size, hidden_size) self.output = nn.Linear(hidden_size, 1) self.sigmoid = nn.Sigmoid() self.softmax = nn.Softmax(dim=1)
def __init__(self, img_channels, num_layers): super(self).__init__() self.vgg_block_1 = self._make_vgg_block(img_channels, 64, num_layers[0]) self.maxpool_1 = nn.Maxpool2d(stride=2, padding=2) self.vgg_block_2 = self._make_vgg_block(64, 128, num_layers[1]) self.maxpool_2 = nn.Maxpool2d(stride=2, padding=2) self.vgg_block_3 = self._make_vgg_block(128, 256, num_layers[2]) self.maxpool_3 = nn.Maxpool2d(stride=2, padding=2) self.vgg_block_4 = self._make_vgg_block(256, 512, num_layers[3]) self.maxpool_4 = nn.Maxpool2d(stride=2, padding=2) self.vgg_block_5 = self._make_vgg_block(512, 512, num_layers[4]) self.maxpool_5 = nn.Maxpool2d(stride=2, padding=2) self.linear_1 = nn.Linear(512*7*7, 4096) self.linear_2 = nn.Linear(4096, 4096) self.linear_3 = nn.Linear(4096, 1000)
def __init__(self): super().__init__() Conv = ConvWarpper self.conv1 = Conv(3, 16, 3, padding=1, relu=True, batch_norm=False) self.pool1 = nn.MaxPool2d(2, 2) self.conv2 = Conv(16, 32, 3, padding=1, relu=True, batch_norm=True) self.pool2 = nn.Maxpool2d(2, 2) self.conv3_1s = Conv(32, 16, 1, padding=0, relu=False, batch_norm=False) self.conv3_1 = Conv(16, 128, 3, padding=1, relu=True, batch_norm=False) self.conv3_2s = Conv(128, 16, 1, padding=0, relu=False, batch_norm=False) self.conv3_2 = Conv(16, 128, 3, padding=1, relu=True, batch_norm=True) self.pool3 = nn.Maxpool2d(2, 2) self.conv4_1s = Conv(128, 32, 1, padding=0, relu=False, batch_norm=False) self.conv4_1 = Conv(32, 256, 3, padding=1, relu=True, batch_norm=False) self.conv4_2s = Conv(256, 32, 1, padding=0, relu=False, batch_norm=False) self.conv4_2 = Conv(32, 256, 3, padding=1, relu=True, batch_norm=True) self.pool4 = nn.Maxpool2d(2, 2) self.conv5_1s = Conv(256, 64, 1, padding=0, relu=False, batch_norm=False) self.conv5_1 = Conv(64, 512, 3, padding=1, relu=True, batch_norm=False)
def __init__(self, base=4): self.base = base super(ConvNet, self).__init__() self.conv1 = nn.Conv2d(1, 2**self.base, kernel_size=3, padding=1) self.conv2 = nn.Conv2d(2**self.base, 2**self.base, kernel_size=3, padding=1) self.conv3 = nn.Conv2d(2**self.base, 2**(self.base + 1), kernel_size=3, padding=1) self.conv4 = nn.Conv2d(2**(self.base + 1), 2**(self.base + 1), kernel_size=3, padding=1) self.conv5 = nn.Conv2d(2**(self.base + 1), 2**(self.base + 2), kernel_size=3, padding=1) self.conv6 = nn.Conv2d(2**(self.base + 2), 2**(self.base + 2), kernel_size=3, padding=1) self.conv7 = nn.Conv2d(2**(self.base + 2), 2**(self.base + 3), kernel_size=3, padding=1) self.conv8 = nn.Conv2d(2**(self.base + 3), 2**(self.base + 3), kernel_size=3, padding=1) self.conv9 = nn.Conv2d(2**(self.base + 3), 2**(self.base + 4), kernel_size=3, padding=1) self.conv10 = nn.Conv2d(2**(self.base + 4), 2**(self.base + 4), kernel_size=3, padding=1) self.pool = nn.Maxpool2d(kernel_size=2) self.linear1 = nn.Linear(2048, 1024) self.linear2 = nn.Linear(1024, 512) self.linear3 = nn.Linear(512, 1) self.dropout1 = nn.Dropout(0.5) self.dropout2 = nn.Dropout(0.3)
def __init__(self, CT_embedding_dim = 32, other_imformation_dim=64, FVC_imformation_dim =64, CT_imformation_dim=64, ): super(baseline_predict_model, self).__init__() self.CT_feather_model = CT_feather() self.CT_conv = nn.Sequential( nn.Conv2d(CT_embedding_dim,CT_imformation_dim,1), nn.ReLU(), nn.Dropout(p=0.5) ) self.fvc_linear = nn.Sequential( nn.Linear(146, FVC_imformation_dim), nn.ReLU(), nn.Dropout(p=0.5)) self.other_imfor_linear = nn.Sequential( nn.Linear(3, other_imformation_dim), nn.ReLU(), nn.Dropout(p=0.5)) pointwise_in_channels = other_imformation_dim + FVC_imformation_dim + CT_imformation_dim self.pointwise = nn.Sequential( nn.Conv2d(pointwise_in_channels,32,1), nn.Conv2d(32,16,1), nn.Conv2d(16,8,1), nn.ReLU(), nn.Dropout(p=0.5) ) self.output_layer == nn.Sequential( nn.Maxpool2d((5,1)) nn.Linear(146,146) )