Exemple #1
0
def test():
    submit_path = config.submit + config.model_name + os.sep + config.description + os.sep + str(
        config.fold) + os.sep  #save submitted csv results
    weight_path = config.weights + config.model_name + os.sep + config.description + os.sep + str(
        config.fold) + os.sep
    csv_map = OrderedDict({'cls': [], 'label': [], 'probability': []})

    test_loader = DataLoader(customDataset(config.test_data, train=False),
                             batch_size=config.batch_size * 2,
                             shuffle=False,
                             pin_memory=True)

    model = get_net()
    model = DataParallel(model.cuda(), device_ids=config.gpus)
    checkpoint = torch.load(weight_path + 'model_best.pth.tar')
    model.load_state_dict(checkpoint['state_dict'])

    model.eval()
    with torch.no_grad():
        for index, (data, file_paths) in enumerate(test_loader):
            labels = [int(path.split('/')[-2]) for path in file_paths]
            data = Variable(data).cuda()
            output = model(data)
            smax = nn.Softmax(1)
            smax_out = smax(output)
            _, cls = torch.max(smax_out, 1)

            csv_map['cls'].extend(cls)
            csv_map['label'].extend(labels)
            for output in smax_out:
                prob = ";".join([str(i) for i in output.data.tolist()])
                csv_map['probability'].append(prob)
    result = pd.DataFrame(csv_map)
    result.to_csv(submit_path + 'submit.csv', index=False, header=None)
Exemple #2
0
    def __init__(self, model_name, batch_size, gpu_memory):
        super().__init__(batch_size, gpu_memory)
        if model_name in [
                'pt_vgg', 'pt_resnet', 'pt_inception', 'pt_densenet'
        ]:
            model = model_class_dict[model_name](pretrained=True)
            self.mean = np.reshape([0.485, 0.456, 0.406], [1, 3, 1, 1])
            self.std = np.reshape([0.229, 0.224, 0.225], [1, 3, 1, 1])
            model = DataParallel(model.cuda())
        else:
            model = model_class_dict[model_name]()
            if model_name in ['pt_post_avg_cifar10', 'pt_post_avg_imagenet']:
                # checkpoint = torch.load(model_path_dict[model_name])
                self.mean = np.reshape([0.485, 0.456, 0.406], [1, 3, 1, 1])
                self.std = np.reshape([0.229, 0.224, 0.225], [1, 3, 1, 1])
            else:
                model = DataParallel(model).cuda()
                checkpoint = torch.load(model_path_dict[model_name] + '.pth')
                self.mean = np.reshape([0.485, 0.456, 0.406], [1, 3, 1, 1])
                self.std = np.reshape([0.225, 0.225, 0.225], [1, 3, 1, 1])
                model.load_state_dict(checkpoint)
                model.float()
        self.mean, self.std = self.mean.astype(np.float32), self.std.astype(
            np.float32)

        model.eval()
        self.model = model
Exemple #3
0
class Person_Attribute(object):
    def __init__(self, weights="resnest50.pth"):
        self.device = torch.device("cuda")
        self.net = resnest50().to(self.device)
        self.net = DataParallel(self.net)
        self.weights = weights
        self.net.load_state_dict(torch.load(self.weights))

        TRAIN_MEAN = [0.485, 0.499, 0.432]
        TRAIN_STD = [0.232, 0.227, 0.266]
        self.transforms = transforms.Compose([
            transforms.ToCVImage(),
            transforms.Resize((128, 256)),
            transforms.ToTensor(),
            transforms.Normalize(TRAIN_MEAN, TRAIN_STD)
        ])

    def recog(self, img_path):
        img = cv2.imread(img_path)
        img = self.transforms(img)
        img = img.unsqueeze(0)

        with torch.no_grad():
            self.net.eval()
            img_input = img.to(self.device)
            outputs = self.net(img_input)
            results = []
            for output in outputs:
                output = torch.softmax(output, 1)
                output = np.array(output[0].cpu())
                label = np.argmax(output)
                score = output[label]
                results.append((label, score))
        return results
Exemple #4
0
def test_pretrain_model():
    device = torch.device("cuda")

    # 参数
    opt = config.MobileNetV3Config()

    # 验证集
    identity_list = dataset.get_lfw_list(opt.lfw_test_list)
    lfw_img_paths = [
        os.path.join(opt.lfw_root, each) for each in identity_list
    ]  # 所有图片的路径

    # 加载模型
    model = mobileNetV3.MobileNetV3(n_class=opt.embedding,
                                    input_size=opt.input_shape[2],
                                    dropout=opt.dropout_rate)
    model.to(device)
    model = DataParallel(model)

    # 加载预训练的模型
    state = torch.load(MODEL)
    model.load_state_dict(state['state_dict'])

    # 用LFW数据集测试
    accuracy, threshold = lfw_test(model, lfw_img_paths, identity_list, opt)
Exemple #5
0
class CainTester:
    def __init__(self, opt):
        self.opt = opt
        self.model = CainGAN(opt)
        self.model = DataParallel(self.model)
        if opt.device != 'cpu':
            self.model = self.model.cuda()
        self.generated = None

    def infer(self, *data):
        self.generated = self.model(*data, infer=True)
        return self.generated

    def get_latest_generated(self):
        return self.generated

    def init_networks(self):
        if self.opt.resume is None:
            raise Exception("Need resume checkpoint for testing")
        current_epoch = self.opt.resume
        checkpoint = torch.load(self.opt.weight_path + "-" +
                                str(current_epoch),
                                map_location='cpu')
        self.model.load_state_dict(checkpoint['GAN_state_dict'])
        current_epoch = checkpoint['epoch']
        self.model.module.print_network()
        return current_epoch
Exemple #6
0
def infer(model, rank=0):
    model = model.cuda()
    model = DataParallel(model)
    model.load_state_dict(torch.load(model_state_dict))
    model.eval()
    if rank == 0:
        print('preparing dataset...')
    data_iterator = DataIterator(coco_dir,
                                 resize=resize,
                                 max_size=max_size,
                                 batch_size=batch_size,
                                 stride=stride,
                                 training=training,
                                 dist=dist)
    if rank == 0:
        print('finish loading dataset!')

    results = []
    with torch.no_grad():
        for i, (data, ids, ratios) in enumerate(data_iterator, start=1):
            scores, boxes, classes = model(data)
            results.append([scores, boxes, classes, ids, ratios])
            if rank == 0:
                size = len(data_iterator.ids)
                msg = '[{:{len}}/{}]'.format(min(i * batch_size, size),
                                             size,
                                             len=len(str(size)))
                print(msg, flush=True)

    results = [torch.cat(r, dim=0) for r in zip(*results)]
    results = [r.cpu() for r in results]
def load_model(model, bin_file, use_dataparallel):
    """
    Given a model instance, loads the weights from bin_file. Handles cuda & DataParallel stuff.
    """
    print(bin_file, use_dataparallel, use_cuda)
    if not use_cuda and use_dataparallel:
        warnings.warn(
            "Cuda not available. Model can not be made Data Parallel.")

    state_dict = torch.load(bin_file,
                            map_location=lambda storage, loc: storage)
    new_state_dict = OrderedDict()
    if use_cuda:
        for k, v in state_dict.items():
            if k[:7] == 'module.':
                if use_dataparallel:
                    model = DataParallel(model)
                    break
                else:
                    name = k[7:]  # remove `module.`
                    new_state_dict[name] = v
        model = model.cuda()
    else:
        for k, v in state_dict.items():
            if k[:7] == 'module.':
                name = k[7:]  # remove `module.`
                new_state_dict[name] = v

    if len(new_state_dict.keys()) > 0:
        model.load_state_dict(new_state_dict)
    else:
        model.load_state_dict(state_dict)

    return model
Exemple #8
0
def main():

    os.system('cp -r ../ConvTasNet "{0}"'.format(config.basePath +
                                                 '/savedCode'))

    model = DataParallel(ConvTasNet(C=2))
    dataloader = AVSpeech('test')
    dataloader = DataLoader(dataloader,
                            batch_size=config.batchsize['test'],
                            num_workers=config.num_workers['test'],
                            worker_init_fn=init_fn)
    loss_func = SISNRPIT()

    if config.use_cuda:
        model = model.cuda()

    config.pretrained_test = [
        '/home/SharedData/Pragya/ModelsToUse/AudioOnlyConvTasNet.pth',
    ]

    for cur_test in config.pretrained_test:

        print('Currently working on: ', cur_test.split('/')[-1])

        model.load_state_dict(torch.load(cur_test)['model_state_dict'])

        total_loss = test(
            cur_test.split('/')[-1].split('.')[0], model, dataloader,
            loss_func)

        torch.cuda.empty_cache()

        print('Average Loss for ',
              cur_test.split('/')[-1], 'is: ', np.mean(total_loss))
def main():

    os.system('cp -r ../ConvTasNet "{0}"'.format(config.basePath +
                                                 '/savedCode'))

    model = DataParallel(ConvTasNet(C=2))

    print('Total Parameters: ', sum(p.numel() for p in model.parameters()))

    dataloader = AVSpeech('train')

    loss_func = SISNRPIT()

    if config.use_cuda:
        model = model.cuda()

    optimizer = torch.optim.Adam(model.parameters(), lr=config.lr[1])

    if config.pretrained:
        saved_model = torch.load(config.pretrained_train)
        model.load_state_dict(saved_model['model_state_dict'])
        optimizer.load_state_dict(saved_model['optimizer_state_dict'])
        saved_loss = np.load(config.loss_path).tolist()
    else:
        saved_loss = None

    dataloader = DataLoader(dataloader,
                            batch_size=config.batchsize['train'],
                            num_workers=config.num_workers['train'],
                            worker_init_fn=init_fn)

    train(model, dataloader, optimizer, loss_func, saved_loss)
Exemple #10
0
class Feature_extract(object):
    def __init__(self):
        self.device = torch.device("cuda")
        self.model = resnet.resnet_face18(opt.use_se)
        self.model = DataParallel(self.model)
        self.model.load_state_dict(torch.load(opt.test_model_path))
        self.model.to(self.device)

        normalize = T.Normalize(mean=[0.485, 0.456, 0.406],
                                std=[0.229, 0.224, 0.225])
        self.transforms = T.Compose([T.ToTensor(), normalize])

    def feature_extract(self, img_path):
        img = Image.open(img_path)
        img = img.resize((112, 112))
        img = self.transforms(img)
        img = img.unsqueeze(0)
        with torch.no_grad():
            self.model.eval()
            data_input = img.to(self.device)
            feature = self.model(data_input)
        feature = np.array(feature.cpu())[0, :].tolist()
        vector = np.mat(feature)
        denom = np.linalg.norm(vector)
        return (np.array(feature) / denom).tolist()
Exemple #11
0
def main():

    os.system('cp -r ../Oracle "{0}"'.format(config.basePath + '/savedCode'))

    model = DataParallel(ConvTasNet(C=2, test_with_asr=True))
    dataloader = AVSpeech('test')
    dataloader = DataLoader(dataloader,
                            batch_size=config.batchsize['test'],
                            num_workers=config.num_workers['test'],
                            worker_init_fn=init_fn)

    if config.use_cuda:
        model = model.cuda()

    config.pretrained_test = [
        '/home/SharedData/Pragya/Experiments/Oracle/2020-05-20 15:23:34.411560/116662.pth'
    ]

    for cur_test in config.pretrained_test:

        print('Currently working on: ', cur_test.split('/')[-1])

        model.load_state_dict(torch.load(cur_test)['model_state_dict'])

        total_loss = test(model, dataloader)

        torch.cuda.empty_cache()

        print('Average Loss for ',
              cur_test.split('/')[-1], 'is: ', np.mean(total_loss))
def convert_weights_to_generic_format(model, src_path, dst_path):
    weights = torch.load(src_path)
    # for macbook
    # weights = torch.load(src_path, map_location=torch.device('cpu'))
    if list(weights.keys())[0].startswith('module.'):
        model_parallel = DataParallel(model)
        model_parallel.load_state_dict(weights)
        torch.save(model_parallel.module.state_dict(), dst_path)
class Person_Attribute(object):
    def __init__(self, weights="resnest50.pth"):
        self.device = torch.device("cuda")
        self.net = resnest50().to(self.device)
        self.net = DataParallel(self.net)
        self.weights = weights
        self.net.load_state_dict(torch.load(self.weights))

        TRAIN_MEAN = [0.485, 0.499, 0.432]
        TRAIN_STD = [0.232, 0.227, 0.266]
        self.size = (128, 256)
        self.transforms = transforms.Compose([
            transforms.ToCVImage(),
            transforms.Resize((128, 256)),
            transforms.ToTensor(),
            transforms.Normalize(TRAIN_MEAN, TRAIN_STD)
        ])

        self.mean = torch.tensor([0.485, 0.499, 0.432], dtype=torch.float32)
        self.std = torch.tensor([0.232, 0.227, 0.266], dtype=torch.float32)

        self.atts = [
            "gender", "age", "orientation", "hat", "glasses", "handBag",
            "shoulderBag", "backBag", "upClothing", "downClothing"
        ]

    def detect(self, img):
        #imgss = self.transforms(img)
        image = img.astype('uint8')
        image = cv2.resize(image, self.size, cv2.INTER_LINEAR)
        image = image.transpose(2, 0, 1)
        image = torch.from_numpy(image)
        image = image.float() / 255.0

        image = image.sub_(self.mean[:, None, None]).div_(self.std[:, None,
                                                                   None])

        image = image.unsqueeze(0)

        with torch.no_grad():
            self.net.eval()
            img_input = image.to(self.device)
            outputs = self.net(img_input)
            results = []
            for output in outputs:
                output = torch.softmax(output, 1)
                output = np.array(output[0].cpu())
                label = np.argmax(output)
                score = output[label]
                results.append((label, score))
            labels = [i[0] for i in results]
            dict_result = {}

            for att, label in zip(self.atts, labels):
                if label == -1:
                    continue
                dict_result.update({str(att): name_dict[att][label]})
        return dict_result
def main(args):
    # Select the hardware device to use for inference.
    if torch.cuda.is_available():
        device = torch.device('cuda', torch.cuda.current_device())
        torch.backends.cudnn.benchmark = True
    else:
        device = torch.device('cpu')

    # Disable gradient calculations.
    torch.set_grad_enabled(False)

    pretrained = not args.model_file

    if pretrained:
        print(
            'No model weights file specified, using pretrained weights instead.'
        )

    # Create the model, downloading pretrained weights if necessary.
    if args.arch == 'hg1':
        model = hg1(pretrained=pretrained)
    elif args.arch == 'hg2':
        model = hg2(pretrained=pretrained)
    elif args.arch == 'hg8':
        model = hg8(pretrained=pretrained)
    else:
        raise Exception('unrecognised model architecture: ' + args.model)
    model = model.to(device)

    if not pretrained:
        assert os.path.isfile(args.model_file)
        print('Loading model weights from file: {}'.format(args.model_file))
        checkpoint = torch.load(args.model_file)
        state_dict = checkpoint['state_dict']
        if sorted(state_dict.keys())[0].startswith('module.'):
            model = DataParallel(model)
        model.load_state_dict(state_dict)

    # Initialise the MPII validation set dataloader.
    # val_dataset = Mpii(args.image_path, is_train=False)
    # val_loader = DataLoader(val_dataset, batch_size=args.batch_size, shuffle=False,
    #                         num_workers=args.workers, pin_memory=True)

    # Generate predictions for the validation set.
    # _, _, predictions = do_validation_epoch(val_loader, model, device, Mpii.DATA_INFO, args.flip)

    model = hg1(pretrained=True)
    predictor = HumanPosePredictor(model, device='cpu')
    # my_image = image_loader("../inference-img/1.jpg")
    # joints = image_inference(predictor, image_path=None, my_image=my_image)
    # imshow(my_image, joints=joints)
    if args.camera == False:
        inference_video(predictor, "../inference-video/R6llTwEh07w.mp4")

    elif args.camera:
        inference_video(predictor, 0)
 def setARCFACE(self):
     model = resnet_face18(False)
     model = DataParallel(model).to(self.device)
     model.load_state_dict(
         torch.load(
             os.path.join(settings.BASE_DIR, 'static/') +
             'src/weights/resnet18_pretrain.pth'))
     # model.load_state_dict(torch.load(os.path.join(settings.BASE_DIR, 'static/') + 'src/weights/resnet18_KFace.pth'))
     model.eval()
     return model
Exemple #16
0
 def initialize_model(self, model_type):
     '''
     Loads and initializes the model based on model size
     '''
     g = Generator(200, 64)
     g_model = DataParallel(g)
     g_checkpoint = load('plane_generator.tar' if model_type ==
                         'Plane' else 'chair_generator.tar', map_location=DEVICE)
     g_model.load_state_dict(g_checkpoint["model_state_dict"])
     return g_model
def test_model(test_dataset):
    num_test = len(test_dataset)
    test_useful_end_idx = get_useful_end_idx(sequence_length, num_test)
    test_idx = []
    for i in test_useful_end_idx:
        for j in range(sequence_length):
            test_idx.append(i - j * srate)
    test_idx.reverse()
    test_loader = DataLoader(
        test_dataset,
        batch_size=test_batch_size,
        sampler=SeqSampler(test_dataset, test_idx),
        # sampler=test_idx,
        num_workers=0,
        pin_memory=False)
    model = res34_tcn()
    model = DataParallel(model)
    model.load_state_dict(torch.load(model_name))
    # model = model.module
    # model = DataParallel(model)

    if use_gpu:
        model = model.cuda()
    # model = DataParallel(model)
    # model = model.module

    model.eval()

    all_preds_s = []

    num = 0
    with torch.no_grad():
        for data in test_loader:
            num = num + 1
            inputs, _, kdatas = data
            if use_gpu:
                inputs = Variable(inputs.cuda())
                kdatas = Variable(kdatas.cuda())
            else:
                inputs = Variable(inputs)
                kdatas = Variable(kdatas)

            outputs_s = model.forward(inputs, kdatas)

            #outputs_s = outputs_s[-1, (sequence_length - 1):: sequence_length]
            outputs_s = outputs_s[-1]
            outputs_s = F.softmax(outputs_s, dim=-1)

            _, preds_s = torch.max(outputs_s.data, -1)

            for j in range(preds_s.shape[0]):
                all_preds_s.append(preds_s[j].data.item())

    return all_preds_s
def create_model(load_name: str, n_classes: int) -> nn.Module:
    # We take RGB images as input and predict the target class against the background.
    model = DataParallel(UNet(n_channels=3, n_classes=n_classes,
                              bilinear=True))
    if load_name:
        print(f"Loading {load_name}")
        model.load_state_dict(
            torch.load(
                f"results/unet/{load_name}/checkpoints/model_latest.pth"))

    return model
Exemple #19
0
 def _set_model(self, model_weights_path):
     """
     A function which instantiates the model and loads the weights
     :param model_weights_path: str, path to the model weights
     :return: None
     """
     model = resnet_face18(False)
     model = DataParallel(model)
     model.load_state_dict(torch.load(model_weights_path, map_location=self.torch_device))
     model.to(self.torch_device)
     model.eval()
     self.model = model
def main(args):
    # Select the hardware device to use for inference.
    if torch.cuda.is_available():
        device = torch.device('cuda', torch.cuda.current_device())
        torch.backends.cudnn.benchmark = True
    else:
        device = torch.device('cpu')

    # Disable gradient calculations.
    torch.set_grad_enabled(False)

    pretrained = not args.model_file

    if pretrained:
        print(
            'No model weights file specified, using pretrained weights instead.'
        )

    # Create the model, downloading pretrained weights if necessary.
    if args.arch == 'hg1':
        model = hg1(pretrained=pretrained)
    elif args.arch == 'hg2':
        model = hg2(pretrained=pretrained)
    elif args.arch == 'hg8':
        model = hg8(pretrained=pretrained)
    else:
        raise Exception('unrecognised model architecture: ' + args.model)
    model = model.to(device)

    if not pretrained:
        assert os.path.isfile(args.model_file)
        print('Loading model weights from file: {}'.format(args.model_file))
        checkpoint = torch.load(args.model_file)
        state_dict = checkpoint['state_dict']
        if sorted(state_dict.keys())[0].startswith('module.'):
            model = DataParallel(model)
        model.load_state_dict(state_dict)

    # Initialise the MPII validation set dataloader.
    val_dataset = Mpii(args.image_path, is_train=False)
    val_loader = DataLoader(val_dataset,
                            batch_size=args.batch_size,
                            shuffle=False,
                            num_workers=args.workers,
                            pin_memory=True)

    # Generate predictions for the validation set.
    _, _, predictions = do_validation_epoch(val_loader, model, device,
                                            Mpii.DATA_INFO, args.flip)

    # Report PCKh for the predictions.
    print('\nFinal validation PCKh scores:\n')
    print_mpii_validation_accuracy(predictions)
def load_generator(
    path: Path, channels: int, img_size: int, n_classes: int, latent_dim: int
) -> nn.Module:
    model = DataParallel(
        Generator(
            n_channels=channels, depth=9, n_classes=n_classes, latent_size=latent_dim
        )
    )
    model.load_state_dict(torch.load(path))
    model.eval()

    return model
Exemple #22
0
def main():
    args = get_parser()
    with open(args.cfg_path) as f:
        cfg = json.load(f)
    model = MODELS[cfg['model']](num_nodes=cfg['grid_size'], use_crf=cfg['use_crf'])
    model = DataParallel(model, device_ids=None)
    checkpoint = torch.load(args.load_path)
    model.load_state_dict(checkpoint['state_dict'])
    model = model.cuda()
    model.eval()
    x = torch.ones((2,4,3,224,224))
    y = model(x)
    print(y.size())
Exemple #23
0
def load_model(base_dir,
               run_name,
               experiment_mode="",
               device=None,
               force_multiple_gpu=False):
    model_fname = get_model_fname(base_dir,
                                  run_name,
                                  experiment_mode=experiment_mode)

    checkpoint = torch.load(model_fname, map_location=device)
    hparams = checkpoint["hparams"]
    model_name = checkpoint.get("model_name", "v0")
    chosen_diseases = hparams["diseases"].split(",")
    train_resnet = hparams["train_resnet"]
    multiple_gpu = hparams.get("multiple_gpu", False)

    def extract_params(name):
        params = {}
        prefix = name + "_"
        for key, value in hparams.items():
            if key.startswith(prefix):
                key = key[len(prefix):]
                params[key] = value
        return params

    opt_params = extract_params("opt")

    # Load model
    model = init_empty_model(model_name, chosen_diseases, train_resnet)

    # NOTE: this force param has to be used for cases when the hparam was not saved
    if force_multiple_gpu or multiple_gpu:
        model = DataParallel(model)

    if device:
        model = model.to(device)

    # Load optimizer
    opt_name = hparams["opt"]
    OptClass = optimizers.get_optimizer_class(opt_name)
    optimizer = OptClass(model.parameters(), **opt_params)

    model.load_state_dict(checkpoint["model_state_dict"])
    optimizer.load_state_dict(checkpoint["optimizer_state_dict"])

    # Load loss
    loss_name = hparams["loss"]
    loss_params = extract_params("loss")

    # TODO: make a class to hold all of these values (and avoid changing a lot of code after any change here)
    return model, model_name, optimizer, opt_name, loss_name, loss_params, chosen_diseases
def main():
    opt = Config(os.getcwd())
    if opt.backbone == 'resnet18':
        model = resnet_face18(opt.use_se)
    elif opt.backbone == 'resnet34':
        model = resnet34()
    elif opt.backbone == 'resnet50':
        model = resnet50()

    model = DataParallel(model)
    # load_model(model, opt.test_model_path)
    model.load_state_dict(
        torch.load(opt.test_model_path, map_location={'cuda:0': 'cpu'}))
    model.to(torch.device(device))
    model.eval()
    global args

    train_dataset = Dataset(opt.train_root,
                            opt.train_list,
                            phase='train',
                            input_shape=opt.input_shape)
    trainloader = data.DataLoader(train_dataset,
                                  batch_size=opt.train_batch_size,
                                  shuffle=True,
                                  num_workers=opt.num_workers)

    # centroid_map = create_centroid(model, trainloader)

    test_dataset = Dataset(opt.test_root,
                           opt.test_list,
                           phase='test',
                           input_shape=opt.input_shape)
    test_loader = data.DataLoader(
        test_dataset,
        batch_size=1000,
        # batch_size=opt.test_batch_size,
        shuffle=True,
        num_workers=opt.num_workers)

    for x, y in test_loader:

        latent_vecs = model(x)
        print(latent_vecs.shape, y.shape)
        target = y
        plot3d_tsne(
            latent_vecs,
            target,
        )
        show_umap(latent_vecs, target)
        t_sne(latent_vecs, target)
Exemple #25
0
def load_model_by_state_dict(model, state_dict_fn):
    pass
    from torch.nn import DataParallel
    import torch
    model_dict = torch.load(state_dict_fn)
    try:
        model.load_state_dict(model_dict['state_dict'])
    except:
        try:
            model.load_state_dict(model_dict)
        except:
            model = DataParallel(model.cuda())
            if 'state_dict' in model_dict:
                model.load_state_dict(model_dict['state_dict'])
            else:
                model.load_state_dict(model_dict)
    return model
Exemple #26
0
def load_model(backbone, device_ids, test_model_path, use_se):
    if backbone == 'resnet18_finger':
        model = resnet.resnet18_finger(use_se)
    elif backbone == 'resnet18':
        model = resnet.resnet18(pretrained=False)
    elif backbone == 'resnet34':
        model = resnet.resnet34(pretrained=False)
    elif backbone == 'resnet50':
        model = resnet.resnet50(pretrained=False)
    if opt.multi_gpus:
        model = DataParallel(model, device_ids=device_ids)
    model.load_state_dict(torch.load(test_model_path))
    #model.to(torch.device("cuda"))
    if torch.cuda.is_available():
        model = model.cuda()
    model.eval()
    return model
Exemple #27
0
class UNetTester(object):
    def __init__(self, model, devices_num=2, color_dim=1, num_classes=2):
        self.net = UNet(color_dim=color_dim, num_classes=num_classes)
        checkpoint = torch.load(model)
        self.color_dim = color_dim
        self.num_classes = num_classes
        self.net.load_state_dict(checkpoint['state_dir'])
        self.net = self.net.cuda()
        if devices_num == 2:
            self.net = DataParallel(self.net, device_ids=[0, 1])
        self.net.eval()

    def test(self, folder, target_dir):
        mkdir(target_dir)
        cracks_files = glob.glob(os.path.join(folder, "*.jpg"))
        print(len(cracks_files), "imgs.")
        for crack_file in tqdm(cracks_files):
            name = os.path.basename(crack_file)
            save_path = os.path.join(target_dir, name)

            data = cv2.imread(crack_file, cv2.IMREAD_GRAYSCALE)
            output = self._test(data)  #图片结果

            cv2.imwrite(save_path, output)

    def _test(self, data):
        data = data.astype(np.float32) / 255.
        data = np.expand_dims(data, 0)
        data = np.expand_dims(data, 0)

        input = torch.from_numpy(data)
        height = input.size()[-2]
        width = input.size()[-1]
        input = Variable(input, volatile=True).cuda()
        batch_size = 1

        output = self.net(input)
        output = output.transpose(1, 3).transpose(1, 2).contiguous().view(
            -1, self.num_classes)
        _, output = output.data.max(dim=1)
        output[output > 0] = 255
        output = output.view(height, width)
        output = output.cpu().numpy()

        return output
Exemple #28
0
def test(best_roc, fold, device, val_loader, test_loader, val_d, test_df,
         meta_features, oof):
    best_model_path = model_dir + [
        file for file in os.listdir(model_dir)
        if str(round(best_roc, 3)) in file and "Fold" + str(fold) in file
    ][0]

    preds = torch.zeros((len(test_df), 1), dtype=torch.float32, device=device)
    # add meta feature from the csv file
    model = DataParallel(
        EfficientNetwork(1, args.arch, meta_features).to(device))
    model.load_state_dict(
        torch.load(best_model_path))  # Loading best model of this fold
    model.eval()  # switch model to the evaluation mode
    with torch.no_grad():
        # Predicting on validation set once again to obtain data for OOF
        # print(f"-------------saving results to oof---------------")
        # val_preds = torch.zeros((len(val_d), 1), dtype=torch.float32, device=device)
        # for j, (x_val, y_val) in tqdm(enumerate(val_loader), total=len(val_loader)):
        #     y_val = y_val.to(device)
        #     if args.use_meta_features:
        #         l = x_val[0].shape[0]
        #     else:
        #         l = x_val.shape[0]
        #     z_val = model(x_val)
        #     val_pred = torch.sigmoid(z_val)
        #     val_preds[j * l:j * l + l] = val_pred
        # oof[val_idx] = val_preds.cpu().numpy()

        # Predicting on test set
        # tta_preds = torch.zeros((len(test_df), 1), dtype=torch.float32, device=device)
        for j in range(args.TTA):
            print(f"processing {j + 1}th TTA")
            for i, x_test in tqdm(enumerate(test_loader),
                                  total=len(test_loader)):
                if args.use_meta_features:
                    l = x_test[0].shape[0]
                else:
                    l = x_test.shape[0]
                z_test = model(x_test)
                z_test = torch.sigmoid(z_test)
                preds[i * test_loader.batch_size:i * test_loader.batch_size +
                      l] += z_test
    preds /= args.TTA
    return preds
Exemple #29
0
def main(args=None):
    parser = argparse.ArgumentParser(
        description='Testing script for face identification.')

    parser.add_argument(
        '--depth',
        help=
        'Resnet depth, must be one of 18, 34, 50, 101, 152 or 20 for sphere',
        type=int,
        default=50)
    parser.add_argument('--parallel',
                        help='Run training with DataParallel',
                        dest='parallel',
                        default=False,
                        action='store_true')
    parser.add_argument('--model', help='Path to model')
    parser.add_argument('--batch_size',
                        help='Batch size (default 50)',
                        type=int,
                        default=50)
    parser.add_argument('--lfw_root', help='Path to LFW dataset')
    parser.add_argument('--lfw_pair_list', help='Path to LFW pair list file')

    parser = parser.parse_args(args)

    is_cuda = torch.cuda.is_available()
    print('CUDA available: {}'.format(is_cuda))

    model = get_net_by_depth(parser.depth)

    if parser.parallel:
        model = DataParallel(model)

    # load_model(model, opt.test_model_path)
    model.load_state_dict(torch.load(parser.model))
    if is_cuda:
        model.cuda()

    identity_list = get_pair_list(parser.lfw_pair_list)
    img_data = load_img_data(identity_list, parser.lfw_root)

    model.eval()
    lfw_test2(model, identity_list, img_data, is_cuda=is_cuda)
Exemple #30
0
def pascal_main():
    data_root = 'data/'
    pascal_label_list = [
        'aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat',
        'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike', 'person',
        'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor'
    ]
    trainloader, testloader = load_pascal(data_root, pascal_label_list)
    net = DataParallel(ColorizationNet(len(pascal_label_list)))

    model_path = 'colorization.pth'
    if os.path.exists(model_path):
        net.load_state_dict(torch.load(model_path))
    train(trainloader,
          100,
          len(pascal_label_list),
          net=net,
          lr=1,
          alpha=1 / 300)