class LSTMAggregation(Aggregation): r"""Performs LSTM-style aggregation in which the elements to aggregate are interpreted as a sequence, as described in the `"Inductive Representation Learning on Large Graphs" <https://arxiv.org/abs/1706.02216>`_ paper. .. warning:: :class:`LSTMAggregation` is not a permutation-invariant operator. Args: in_channels (int): Size of each input sample. out_channels (int): Size of each output sample. **kwargs (optional): Additional arguments of :class:`torch.nn.LSTM`. """ def __init__(self, in_channels: int, out_channels: int, **kwargs): super().__init__() self.in_channels = in_channels self.out_channels = out_channels self.lstm = LSTM(in_channels, out_channels, batch_first=True, **kwargs) self.reset_parameters() def reset_parameters(self): self.lstm.reset_parameters() def forward(self, x: Tensor, index: Optional[Tensor] = None, ptr: Optional[Tensor] = None, dim_size: Optional[int] = None, dim: int = -2) -> Tensor: x, _ = self.to_dense_batch(x, index, ptr, dim_size, dim) return self.lstm(x)[0][:, -1] def __repr__(self) -> str: return (f'{self.__class__.__name__}({self.in_channels}, ' f'{self.out_channels})')
class DenseJK(nn.Module): def __init__(self, mode, channels=None, num_layers=None): super(DenseJK, self).__init__() self.channel = channels self.mode = mode.lower() assert self.mode in ['cat', 'max', 'lstm'] if mode == 'lstm': assert channels is not None assert num_layers is not None self.lstm = LSTM(channels, channels * num_layers // 2, bidirectional=True, batch_first=True) self.att = Linear(2 * channels * num_layers // 2, 1) self.reset_parameters() def reset_parameters(self): if hasattr(self, 'lstm'): self.lstm.reset_parameters() if hasattr(self, 'att'): self.att.reset_parameters() def forward(self, xs): r"""Aggregates representations across different layers. Args: xs [batch, nodes, featdim*3] """ xs = torch.split(xs, self.channel, -1) # list of batch, node, featdim xs = torch.stack(xs, 2) #[batch, nodes, num_layers, num_channels] shape = xs.shape x = xs.reshape( (-1, shape[2], shape[3])) # [ngraph * num_nodes , num_layers, num_channels] alpha, _ = self.lstm(x) alpha = self.att(alpha).squeeze(-1) # [ngraph * num_nodes, num_layers] alpha = torch.softmax(alpha, dim=-1) x = (x * alpha.unsqueeze(-1)).sum(dim=1) x = x.reshape((shape[0], shape[1], shape[3])) return x def __repr__(self): return '{}({})'.format(self.__class__.__name__, self.mode)
class Stock_LSTM(nn.Module): """ I prefer using this Stock LSTM for numerical stability. """ def __init__(self, x, R, W, h, L, v_t): super(Stock_LSTM, self).__init__() self.x = x self.R = R self.W = W self.h = h self.L = L self.v_t = v_t self.LSTM = LSTM(input_size=self.x + self.R * self.W, hidden_size=h, num_layers=L, batch_first=True, dropout=0.1, bidirectional=True) self.last = nn.Linear(self.h * 2, self.v_t) self.st = None def forward(self, input_x): """ :param input_x: input and memory values :return: """ assert (self.st is not None) o, st = self.LSTM(input_x, self.st) if (st[0] != st[0]).any(): with open("debug/lstm.pkl") as f: pickle.dump(self, f) with open("debug/lstm.pkl") as f: pickle.dump(input_x, f) raise ("LSTM produced a NAN, objects dumped.") return self.last(o), st def reset_parameters(self): self.LSTM.reset_parameters() self.last.reset_parameters() def assign_states_tuple(self, states_tuple): self.st = states_tuple
class LSTMAggregation(Aggregation): r"""Performs LSTM-style aggregation in which the elements to aggregate are interpreted as a sequence. .. warn:: :class:`LSTMAggregation` is not permutation-invariant. .. note:: :class:`LSTMAggregation` requires sorted indices. Args: in_channels (int): Size of each input sample. out_channels (int): Size of each output sample. **kwargs (optional): Additional arguments of :class:`torch.nn.LSTM`. """ def __init__(self, in_channels: int, out_channels: int, **kwargs): super().__init__() self.in_channels = in_channels self.out_channels = out_channels self.lstm = LSTM(in_channels, out_channels, batch_first=True, **kwargs) self.reset_parameters() def reset_parameters(self): self.lstm.reset_parameters() def forward(self, x: Tensor, index: Optional[Tensor] = None, *, ptr: Optional[Tensor] = None, dim_size: Optional[int] = None, dim: int = -2) -> Tensor: x, _ = self.to_dense_batch(x, index, ptr, dim_size, dim) return self.lstm(x)[0][:, -1] def __repr__(self) -> str: return (f'{self.__class__.__name__}({self.in_channels}, ' f'{self.out_channels})')
class JumpingKnowledge(torch.nn.Module): r"""The Jumping Knowledge layer aggregation module from the `"Representation Learning on Graphs with Jumping Knowledge Networks" <https://arxiv.org/abs/1806.03536>`_ paper based on either **concatenation** (:obj:`"cat"`) .. math:: \mathbf{x}_v^{(1)} \, \Vert \, \ldots \, \Vert \, \mathbf{x}_v^{(T)} **max pooling** (:obj:`"max"`) .. math:: \max \left( \mathbf{x}_v^{(1)}, \ldots, \mathbf{x}_v^{(T)} \right) or **weighted summation** .. math:: \sum_{t=1}^T \alpha_v^{(t)} \mathbf{x}_v^{(t)} with attention scores :math:`\alpha_v^{(t)}` obtained from a bi-directional LSTM (:obj:`"lstm"`). Args: mode (string): The aggregation scheme to use (:obj:`"cat"`, :obj:`"max"` or :obj:`"lstm"`). channels (int, optional): The number of channels per representation. Needs to be only set for LSTM-style aggregation. (default: :obj:`None`) num_layers (int, optional): The number of layers to aggregate. Needs to be only set for LSTM-style aggregation. (default: :obj:`None`) """ def __init__(self, mode, channels=None, num_layers=None): super(JumpingKnowledge, self).__init__() self.mode = mode.lower() assert self.mode in ['cat', 'max', 'lstm'] if mode == 'lstm': assert channels is not None assert num_layers is not None self.lstm = LSTM( channels, channels * num_layers // 2, bidirectional=True, batch_first=True) self.att = Linear(2 * channels * num_layers // 2, 1) self.reset_parameters() def reset_parameters(self): if hasattr(self, 'lstm'): self.lstm.reset_parameters() if hasattr(self, 'att'): self.att.reset_parameters() def forward(self, xs): r"""Aggregates representations across different layers. Args: xs (list or tuple): List containing layer-wise representations. """ assert isinstance(xs, list) or isinstance(xs, tuple) if self.mode == 'cat': return torch.cat(xs, dim=-1) elif self.mode == 'max': return torch.stack(xs, dim=-1).max(dim=-1)[0] elif self.mode == 'lstm': x = torch.stack(xs, dim=1) # [num_nodes, num_layers, num_channels] alpha, _ = self.lstm(x) alpha = self.att(alpha).squeeze(-1) # [num_nodes, num_layers] alpha = torch.softmax(alpha, dim=-1) return (x * alpha.unsqueeze(-1)).sum(dim=1) def __repr__(self): return '{}({})'.format(self.__class__.__name__, self.mode)
class SAGEConv(MessagePassing): r"""The GraphSAGE operator from the `"Inductive Representation Learning on Large Graphs" <https://arxiv.org/abs/1706.02216>`_ paper .. math:: \mathbf{x}^{\prime}_i = \mathbf{W}_1 \mathbf{x}_i + \mathbf{W}_2 \cdot \mathrm{mean}_{j \in \mathcal{N(i)}} \mathbf{x}_j If :obj:`project = True`, then :math:`\mathbf{x}_j` will first get projected via .. math:: \mathbf{x}_j \leftarrow \sigma ( \mathbf{W}_3 \mathbf{x}_j + \mathbf{b}) as described in Eq. (3) of the paper. Args: in_channels (int or tuple): Size of each input sample, or :obj:`-1` to derive the size from the first input(s) to the forward method. A tuple corresponds to the sizes of source and target dimensionalities. out_channels (int): Size of each output sample. aggr (string, optional): The aggregation scheme to use (:obj:`"mean"`, :obj:`"max"`, :obj:`"lstm"`). (default: :obj:`"add"`) normalize (bool, optional): If set to :obj:`True`, output features will be :math:`\ell_2`-normalized, *i.e.*, :math:`\frac{\mathbf{x}^{\prime}_i} {\| \mathbf{x}^{\prime}_i \|_2}`. (default: :obj:`False`) root_weight (bool, optional): If set to :obj:`False`, the layer will not add transformed root node features to the output. (default: :obj:`True`) project (bool, optional): If set to :obj:`True`, the layer will apply a linear transformation followed by an activation function before aggregation (as described in Eq. (3) of the paper). (default: :obj:`False`) bias (bool, optional): If set to :obj:`False`, the layer will not learn an additive bias. (default: :obj:`True`) **kwargs (optional): Additional arguments of :class:`torch_geometric.nn.conv.MessagePassing`. Shapes: - **inputs:** node features :math:`(|\mathcal{V}|, F_{in})` or :math:`((|\mathcal{V_s}|, F_{s}), (|\mathcal{V_t}|, F_{t}))` if bipartite, edge indices :math:`(2, |\mathcal{E}|)` - **outputs:** node features :math:`(|\mathcal{V}|, F_{out})` or :math:`(|\mathcal{V_t}|, F_{out})` if bipartite """ def __init__( self, in_channels: Union[int, Tuple[int, int]], out_channels: int, aggr: str = 'mean', normalize: bool = False, root_weight: bool = True, project: bool = False, bias: bool = True, **kwargs, ): kwargs['aggr'] = aggr if aggr != 'lstm' else None super().__init__(**kwargs) self.in_channels = in_channels self.out_channels = out_channels self.normalize = normalize self.root_weight = root_weight self.project = project if isinstance(in_channels, int): in_channels = (in_channels, in_channels) if self.project: self.lin = Linear(in_channels[0], in_channels[0], bias=True) if self.aggr is None: self.fuse = False # No "fused" message_and_aggregate. self.lstm = LSTM(in_channels[0], in_channels[0], batch_first=True) self.lin_l = Linear(in_channels[0], out_channels, bias=bias) if self.root_weight: self.lin_r = Linear(in_channels[1], out_channels, bias=False) self.reset_parameters() def reset_parameters(self): if self.project: self.lin.reset_parameters() if self.aggr is None: self.lstm.reset_parameters() self.lin_l.reset_parameters() if self.root_weight: self.lin_r.reset_parameters() def forward(self, x: Union[Tensor, OptPairTensor], edge_index: Adj, size: Size = None) -> Tensor: """""" if isinstance(x, Tensor): x: OptPairTensor = (x, x) if self.project and hasattr(self, 'lin'): x = (self.lin(x[0]).relu(), x[1]) # propagate_type: (x: OptPairTensor) out = self.propagate(edge_index, x=x, size=size) out = self.lin_l(out) x_r = x[1] if self.root_weight and x_r is not None: out += self.lin_r(x_r) if self.normalize: out = F.normalize(out, p=2., dim=-1) return out def message(self, x_j: Tensor) -> Tensor: return x_j def message_and_aggregate(self, adj_t: SparseTensor, x: OptPairTensor) -> Tensor: adj_t = adj_t.set_value(None, layout=None) return matmul(adj_t, x[0], reduce=self.aggr) def aggregate(self, x: Tensor, index: Tensor, ptr: Optional[Tensor] = None, dim_size: Optional[int] = None) -> Tensor: if self.aggr is not None: return scatter(x, index, dim=self.node_dim, dim_size=dim_size, reduce=self.aggr) # LSTM aggregation: if ptr is None and not torch.all(index[:-1] <= index[1:]): raise ValueError(f"Can not utilize LSTM-style aggregation inside " f"'{self.__class__.__name__}' in case the " f"'edge_index' tensor is not sorted by columns. " f"Run 'sort_edge_index(..., sort_by_row=False)' " f"in a pre-processing step.") x, mask = to_dense_batch(x, batch=index, batch_size=dim_size) out, _ = self.lstm(x) return out[:, -1] def __repr__(self) -> str: aggr = self.aggr if self.aggr is not None else 'lstm' return (f'{self.__class__.__name__}({self.in_channels}, ' f'{self.out_channels}, aggr={aggr})')