Exemple #1
0
    def __define_grouped_convolutions(self, input_shape, n_groups,
                                      n_channels_per_branch, is_dilated,
                                      layer_num):
        """
        Define layers inside grouped convolutional block.
        """

        n_channels_in = input_shape[1]

        n_branches = 5
        n_channels_per_group_in = int(n_channels_in /
                                      n_groups)  # 每一个group的输入通道数
        n_channels_out = int(n_groups * n_branches *
                             n_channels_per_branch)  # timeception的输出总通道数
        n_channels_per_group_out = int(n_channels_out /
                                       n_groups)  # 每一个group的输出通道数

        # 通道数要能被group整除
        assert n_channels_in % n_groups == 0
        assert n_channels_out % n_groups == 0

        # type of multi-scale kernels to use: either multi_kernel_sizes or multi_dilation_rates
        if is_dilated:  # 固定尺度的卷积核,多尺度的空洞卷积
            kernel_sizes = (3, 3, 3)
            dilation_rates = (1, 2, 3)
        else:
            kernel_sizes = (3, 5, 7)  # 多尺度的卷积核
            dilation_rates = (1, 1, 1)

        input_shape_per_group = list(input_shape)  # (N,C,T,H,W)
        input_shape_per_group[1] = n_channels_per_group_in

        # loop on groups, and define convolutions in each group

        for idx_group in range(n_groups):
            group_num = idx_group + 1
            self.__define_temporal_convolutional_block(input_shape_per_group,
                                                       n_channels_per_branch,
                                                       kernel_sizes,
                                                       dilation_rates,
                                                       layer_num, group_num)

        # activation
        layer_name = 'relu_tc%d' % (layer_num)
        layer = ReLU()
        layer._name = layer_name
        setattr(self, layer_name, layer)

        # shuffle channels
        layer_name = 'shuffle_tc%d' % (layer_num)
        layer = ChannelShuffleLayer(n_channels_out, n_groups)
        layer._name = layer_name
        setattr(self, layer_name, layer)
    def __define_grouped_convolutions(self, input_shape, n_groups,
                                      n_channels_per_branch, is_dilated,
                                      layer_num):
        '''
        Define layers inside grouped convolutional block. 定义timeception中的操作
        :param input_shape: (32, 1024, 128, 7, 7):1024输入的通道数
        :param n_groups: 8
        :param n_channels_per_branch: [32,40,50,62]
        :param is_dilated:
        :param layer_num: 当前的层数
        :return:
        '''

        n_channels_in = input_shape[1]

        n_branches = 5
        n_channels_per_group_in = int(n_channels_in /
                                      n_groups)  #每个group输入通道的个数 = 128
        n_channels_out = int(n_groups * n_branches *
                             n_channels_per_branch)  #整个temporal层的输出通道数
        n_channels_per_group_out = int(n_channels_out /
                                       n_groups)  #每个group的输出通道的个数

        assert n_channels_in % n_groups == 0  #断言表达式,否的话抛出异常
        assert n_channels_out % n_groups == 0

        # type of multi-scale kernels to use: either multi_kernel_sizes or multi_dilation_rates
        # 设置膨胀与核大小已应对多变的复杂动作时长
        if is_dilated:
            kernel_sizes = (3, 3, 3)
            dilation_rates = (1, 2, 3)
        else:
            kernel_sizes = (3, 5, 7)
            dilation_rates = (1, 1, 1)

        input_shape_per_group = list(input_shape)
        input_shape_per_group[
            1] = n_channels_per_group_in  #(32, 128, 128, 7, 7)

        # loop on groups, and define convolutions in each group
        # 对每一层的每一个group进行定义具体的操作
        for idx_group in range(n_groups):
            group_num = idx_group + 1  #当前的group数
            #定义每个group的操作
            self.__define_temporal_convolutional_block(input_shape_per_group,
                                                       n_channels_per_branch,
                                                       kernel_sizes,
                                                       dilation_rates,
                                                       layer_num, group_num)

        # activation 定义激活操作
        layer_name = 'relu_tc%d' % (layer_num)
        layer = ReLU()
        layer._name = layer_name
        setattr(self, layer_name, layer)

        # shuffle channels 定义混洗操作
        layer_name = 'shuffle_tc%d' % (layer_num)
        layer = ChannelShuffleLayer(n_channels_out, n_groups)
        layer._name = layer_name
        setattr(self, layer_name, layer)