Exemple #1
0
def _prepare_onnx_paddings(g, input, pad):
    if not sym_help._is_packed_list(pad) and sym_help._is_list(pad) and sym_help._is_scalar_list(pad):
        pad = g.op("ConcatFromSequence", pad, axis_i=0, new_axis_i=1)
    # The desired order of paddings is
    # dim_0_begin, dim_1_begin, ... , dim_0_end, ..., dim_n_end.
    # n is the dimension of input.
    # Assume zero-dimensions in the beginning, pad the "pad" sequence with zeros in the beginning
    pad_len = torch.onnx.symbolic_opset9.size(g, pad, g.op("Constant", value_t=torch.tensor([0])))
    # Set extension = [0] * (dim * 2 - len(pad))
    rank = sym_help._get_tensor_rank(input)
    if rank is None:
        rank = g.op("Size", g.op("Shape", input))
    else:
        rank = g.op("Constant", value_t=torch.tensor(rank, dtype=torch.int64))
    extension = g.op("Sub", g.op("Mul", rank,
                     g.op("Constant", value_t=torch.tensor(2, dtype=torch.int64))), pad_len)
    # Concat pad with extension: paddings = [dim_n_begin, dim_n_end, dim_n-1_begin, dim_n-1_end, 0, 0, ... ]
    # Currently ONNX only supports int64 type for Pad
    pad = g.op("Cast", pad, to_i=sym_help.cast_pytorch_to_onnx["Long"])
    paddings = g.op("Concat", pad, g.op("ConstantOfShape", extension, value_t=torch.tensor([0], dtype=torch.int64)), axis_i=0)
    # Reshape and reverse order and collate first beginnings and then ends
    # paddings = [[..., 0, dim_n-1_begin, dim_n_begin],
    #               [..., 0, dim_n-1_end, dim_n_end]]
    # Reshape back to 1-D paddings = [..., 0, dim_n - 1_begin, dim_n_begin, ..., 0, dim_n - 1_end, dim_n_end]
    paddings = sym_help._reshape_helper(g, paddings, g.op("Constant", value_t=torch.tensor([-1, 2])))
    paddings = g.op("Transpose", torch.onnx.symbolic_opset10.flip(g, paddings, [0]), perm_i=[1, 0])
    paddings = sym_help._reshape_helper(g, paddings, g.op("Constant", value_t=torch.tensor([-1])))
    padding_c = g.op("Cast", paddings, to_i=sym_help.cast_pytorch_to_onnx["Long"])
    return padding_c
def _get_im2col_indices_along_dim(g, input_d, kernel_size_d, dilation_d,
                                  padding_d, stride_d):
    # Input is always 4-D (N, C, H, W)
    # Calculate indices of sliding blocks along spatial dimension
    # Slide kernel over input each dim d:
    # each dimension d ranges from 0 to input[d]+2xpadding[d]-dilation[d]x(kernel_size[d]-1)
    # with steps = stride

    blocks_d = g.op("Add", input_d,
                    g.op("Constant", value_t=torch.tensor(padding_d * 2)))
    blocks_d = g.op(
        "Sub", blocks_d,
        g.op("Constant",
             value_t=torch.tensor(dilation_d * (kernel_size_d - 1))))

    # Stride kernel over input and find starting indices along dim d
    blocks_d_indices = g.op("Range", g.op("Constant", value_t=torch.tensor(0)),
                            blocks_d,
                            g.op("Constant", value_t=torch.tensor(stride_d)))

    # Apply dilation on kernel and find its indices along dim d
    kernel_grid = torch.arange(0, kernel_size_d * dilation_d, dilation_d)
    kernel_grid = g.op("Constant", value_t=kernel_grid.unsqueeze(0))

    # Broadcast and add kernel staring positions (indices) with
    # kernel_grid along dim d, to get block indices along dim d
    blocks_d_indices = sym_help._unsqueeze_helper(g, blocks_d_indices,
                                                  [0])  # Reshape to [1, -1]
    kernel_mask = sym_help._reshape_helper(
        g, kernel_grid, g.op("Constant", value_t=torch.tensor([-1, 1])))
    block_mask = g.op("Add", blocks_d_indices, kernel_mask)

    return block_mask
Exemple #3
0
def argmin(g, input, dim, keepdim):
    if sym_help._is_none(dim):
        flattened = sym_help._reshape_helper(g, input, g.op("Constant", value_t=torch.tensor([-1])))
        return g.op("ArgMin", flattened, axis_i=0, keepdims_i=False, select_last_index_i=False)
    else:
        dim = _parse_arg(dim, "i")
        keepdim = _parse_arg(keepdim, "i")
        return g.op("ArgMin", input, axis_i=dim, keepdims_i=keepdim, select_last_index_i=False)
Exemple #4
0
def linalg_vector_norm(g, self, ord, dim, keepdim, dtype):
    if ord == 0:
        if dim is None:
            self = sym_help._reshape_helper(g, self, g.op("Constant", value_t=torch.tensor([-1], dtype=torch.int64)))
            keepdim = None
        cond_op = g.op("Not", g.op("Equal", self, g.op("Constant", value_t=torch.LongTensor([0]))))
        cond_op = g.op("Cast", cond_op, to_i=sym_help.cast_pytorch_to_onnx["Long"])
        return sym_help._reducesum_helper(g, cond_op, axes_i=dim, keepdims_i=keepdim)
    else:
        return lvn(g, self, ord, dim, keepdim, dtype)
Exemple #5
0
def masked_scatter(g, self, mask, source):
    from torch.onnx.symbolic_opset9 import nonzero, expand_as, size
    index = nonzero(g, expand_as(g, mask, self))
    # NOTE: source can have more elements than needed.
    # It could also have arbitrary shape.
    # This is not supported by ONNX::ScatterND, so we need to flatten and slice source tensor.
    source = sym_help._reshape_helper(g, source, torch.LongTensor([-1]))
    source = sym_help._slice_helper(g, source,
                                    axes=torch.LongTensor([0]),
                                    starts=torch.LongTensor([0]),
                                    ends=size(g, index, torch.LongTensor([0])),
                                    dynamic_slice=True)
    return g.op("ScatterND", self, index, source)
def im2col(g, input, kernel_size, dilation, padding, stride):
    # Input is always 4-D tensor (N, C, H, W)
    # All other args are int[2]

    input_h = size(g, input, g.op("Constant", value_t=torch.tensor(2)))
    input_w = size(g, input, g.op("Constant", value_t=torch.tensor(3)))

    stride_h, stride_w = stride[0], stride[1]
    padding_h, padding_w = padding[0], padding[1]
    dilation_h, dilation_w = dilation[0], dilation[1]
    kernel_h, kernel_w = kernel_size[0], kernel_size[1]

    blocks_row_indices = _get_im2col_indices_along_dim(g, input_h, kernel_h,
                                                       dilation_h, padding_h,
                                                       stride_h)
    blocks_col_indices = _get_im2col_indices_along_dim(g, input_w, kernel_w,
                                                       dilation_w, padding_w,
                                                       stride_w)

    output_shape = _get_im2col_output_shape(g, input, kernel_h, kernel_w)
    padded_input = _get_im2col_padded_input(g, input, padding_h, padding_w)

    # For a 4D matrix of size (1, 1, 3, 3) as below with kernel_size=2, stride=1, and dilation=1
    # [[[[1., 2., 3.,],
    #    [4., 5., 6.,],
    #    [7., 8., 9.,]]]]
    # First gather indices along rows (dim=2) with blocks_row_indices = [[0,1], [1,2]] to get:
    # [[[[[1., 2., 3.],
    #     [4., 5., 6.]],
    #    [[4., 5., 6.],
    #     [7., 8., 9.]]]]]
    # And then gather along cols (dim=4) with blocks_row_indices = [[0,1], [1,2]] to get:
    # [[[[[[1., 2.],
    #      [4., 5.]],
    #     [[2., 3.],
    #      [5., 6]]],
    #    [[[4., 5.],
    #      [7., 8.]],
    #     [[5., 6.],
    #      [8., 9.]]]]]]
    # Transpose dims 3 (depth) and 4 (rows), and then reshape to output shape (1, 1, 4, 4) to get:
    #  [[[1., 2., 4., 5.],
    #    [2., 3., 5., 6.],
    #    [4., 5., 7., 8.],
    #    [5., 6., 8., 9.]]]
    output = g.op("Gather", padded_input, blocks_row_indices, axis_i=2)
    output = g.op("Gather", output, blocks_col_indices, axis_i=4)
    output = g.op("Transpose", output, perm_i=[0, 1, 2, 4, 3, 5])
    return sym_help._reshape_helper(g, output, output_shape)
Exemple #7
0
def linalg_vector_norm(g, self, ord, dim, keepdim, dtype):
    if ord == 0:
        if dim is None:
            self = symbolic_helper._reshape_helper(
                g, self, g.op("Constant", value_t=torch.tensor([-1], dtype=torch.int64))
            )
            keepdim = 0

        cond_op = g.op(
            "Not", g.op("Equal", self, g.op("Constant", value_t=torch.LongTensor([0])))
        )
        cond_op = g.op(
            "Cast",
            cond_op,
            to_i=symbolic_helper.cast_pytorch_to_onnx[self.type().scalarType()],
        )
        return symbolic_helper._reducesum_helper(
            g, cond_op, axes_i=dim, keepdims_i=keepdim
        )
    else:
        return opset9.linalg_vector_norm(g, self, ord, dim, keepdim, dtype)
def index_put(g, self, indices_list_value, values, accumulate=False):
    if sym_help._is_packed_list(indices_list_value):
        indices_list = sym_help._unpack_list(indices_list_value)
    else:
        indices_list = [indices_list_value]
    if sym_help._operator_export_type == torch.onnx.OperatorExportTypes.ONNX_ATEN_FALLBACK:
        args = [self] + indices_list + [values, accumulate]
        return g.at("index_put", *args)

    from torch.onnx.symbolic_opset9 import add, expand
    accumulate = sym_help._parse_arg(accumulate, "b")

    if len(indices_list) == 0:
        return values

    if len(indices_list) > 1:
        for idx_ in range(len(indices_list)):
            if indices_list[idx_].type().scalarType() == "Bool":
                indices_list[idx_] = g.op("NonZero", indices_list[idx_])
        index = indices_list[0]

        for ind in indices_list[1:]:
            index = add(g, index, ind)
        broadcast_index_shape = g.op("Shape", index)
        indices_list = [
            sym_help._unsqueeze_helper(
                g, expand(g, ind, broadcast_index_shape, None), [-1])
            for ind in indices_list
        ]
        index = g.op("Concat", *indices_list, axis_i=-1)
    else:
        # Replace index_put node with masked_scatter or masked_fill
        # when inputs to the index_put node contains a single boolean input.
        #
        # index_put -> masked_fill
        #   * input index contains single tensor of Bool type (e.g.: %24 <- %23).
        #   * input value contains single element (e.g.: %18).
        #
        # Torch IR
        #   %mask : Float(2, 2, 2, strides=[4, 2, 1], requires_grad=0, device=cpu) = aten::clone(%0, %6)
        #   %16 : Bool(2, 2, 2, strides=[4, 2, 1], requires_grad=0, device=cpu) =
        #               aten::to(%8, %26, %27, %11, %12, %28, %29, %15)
        #   %18 : Float(requires_grad=0, device=cpu) = prim::Constant[value={1}]()
        #   %23 : Bool(8, strides=[1], device=cpu) = aten::view(%16, %22)
        #   %24 : Tensor?[] = prim::ListConstruct(%23)
        #   %25 : Float(2, 2, 2, strides=[4, 2, 1], requires_grad=0, device=cpu) =
        #                aten::index_put(%mask, %24, %18, %30)
        #   return (%25)
        #
        #
        # index_put -> masked_scatter
        #   * input index contains single tensor of Bool type (e.g.: %32 <- %31).
        #   * input value contains multiple elements (e.g.: %28).
        #
        # Torch IR
        #   %mask : Float(2, 2, 2, strides=[4, 2, 1], requires_grad=0, device=cpu) = aten::clone(%0, %6)
        #   %28 : Float(8, strides=[1], requires_grad=0, device=cpu)
        #                = prim::Constant[value= 1  1  1  1  1  1  1  1 [ CPUFloatType{8} ]]()
        #   %15 : Bool(2, 2, 2, strides=[4, 2, 1], requires_grad=0, device=cpu)
        #                = aten::ne(%mask, %some_const)
        #   %23 : Bool(2, 2, 2, strides=[4, 2, 1], requires_grad=0, device=cpu)
        #                = aten::to(%15, %34, %35, %18, %19, %36, %37, %22)
        #   %38 : Long(requires_grad=0, device=cpu) = prim::Constant[value={0}]()
        #   %30 : int[] = prim::Constant[value=[-1]]()
        #   %31 : Bool(8, strides=[1], device=cpu) = aten::view(%23, %30)
        #   %32 : Tensor?[] = prim::ListConstruct(%31)
        #   %33 : Float(2, 2, 2, strides=[4, 2, 1], requires_grad=0, device=cpu)
        #               = aten::index_put(%mask, %32, %28, %38)
        #   return (%33)
        index = indices_list[0]
        bool_inp = index
        if bool_inp.type() is not None and bool_inp.type().scalarType(
        ) == "Bool":
            rank = sym_help._get_tensor_rank(values)
            if rank is not None and rank == 0:
                from torch.onnx.symbolic_opset9 import masked_fill
                return masked_fill(g, self, bool_inp, values)
            return masked_scatter(g, self, bool_inp, values)
        broadcast_index_shape = g.op("Shape", index)
        index = sym_help._unsqueeze_helper(g, index, [-1])
    sub_data_shape = sym_help._slice_helper(g,
                                            g.op("Shape", self),
                                            axes=[0],
                                            starts=[len(indices_list)],
                                            ends=[maxsize])
    values_shape = g.op("Concat",
                        broadcast_index_shape,
                        sub_data_shape,
                        axis_i=0)
    # Check if values is a singular value and expand accordingly
    rank = sym_help._get_tensor_rank(values)
    if rank is not None and rank == 0:
        values = expand(g, values, values_shape, None)
    values = sym_help._reshape_helper(g, values, values_shape)

    dtype = self.type().scalarType()
    if dtype is not None and dtype != values.type().scalarType():
        values = g.op("Cast",
                      values,
                      to_i=sym_help.cast_pytorch_to_onnx[dtype])
    dtype = sym_help.scalar_type_to_onnx.index(
        sym_help.cast_pytorch_to_onnx[dtype])
    dtype = sym_help.scalar_type_to_pytorch_type[dtype]

    if accumulate:
        zeros = g.op("ConstantOfShape",
                     g.op("Shape", self),
                     value_t=torch.tensor([0], dtype=dtype))
        result = g.op("ScatterND", zeros, index, values)
        result = add(g, self, result)
    else:
        result = g.op("ScatterND", self, index, values)

    return result
Exemple #9
0
def repeat_interleave(g, self, repeats, dim=None, output_size=None):
    input = self
    final_dim = dim
    # if dim is None flatten
    # By default, use the flattened input array, and return a flat output array
    if sym_help._is_none(dim):
        input = sym_help._reshape_helper(
            g, self, g.op("Constant", value_t=torch.tensor([-1])))
        dim = 0
    else:
        dim = sym_help._maybe_get_scalar(dim)

    repeats_dim = sym_help._get_tensor_rank(repeats)
    repeats_sizes = sym_help._get_tensor_sizes(repeats)
    input_sizes = sym_help._get_tensor_sizes(input)
    if repeats_dim is None:
        raise RuntimeError(
            "Unsupported: ONNX export of repeat_interleave for unknown "
            "repeats rank.")
    if repeats_sizes is None:
        raise RuntimeError(
            "Unsupported: ONNX export of repeat_interleave for unknown "
            "repeats size.")
    if input_sizes is None:
        raise RuntimeError(
            "Unsupported: ONNX export of repeat_interleave for unknown "
            "input size.")
    # Handle cases where dim is negative
    if dim < 0:
        dim += len(input_sizes)

    output_sizes = input_sizes.copy()
    for idx, input_size in enumerate(input_sizes):
        if input_size is None:
            output_sizes[idx], input_sizes[idx] = 0, -1
    print(output_sizes, input_sizes)

    cond_dynamic_repeats = (repeats_dim == 1 and repeats_sizes[0] is None)
    # If input size is dynamic or repeats vector is dynamic
    if output_sizes[dim] == 0 or cond_dynamic_repeats:
        reps = sym_help._size_helper(g, input, dim)
        reps = unsqueeze(g, reps, 0)
        # Check if repeats vector is a single integer value
        # or a single dimension tensor with non-dynamic values
        if repeats_dim == 0 or (repeats_dim == 1 and repeats_sizes[0] == 1):
            if not sym_help._is_tensor(repeats):
                repeats = g.op("Constant", value_t=torch.LongTensor(repeats))
            repeats = g.op("Expand", repeats, reps)
        # Check if repeats is dynamic
        # As repeats is dynamic, we use a where node as a substitute for the if statement
        # If repests_dim = 1, expand repeats otherwise use original tensor
        elif cond_dynamic_repeats:
            repeat_dim = sym_help._size_helper(
                g, repeats, g.op("Constant", value_t=torch.LongTensor([0])))
            repeat_cond = g.op("Equal", repeat_dim,
                               g.op("Constant", value_t=torch.LongTensor([1])))
            repeats = where(g, repeat_cond, g.op("Expand", repeats, reps),
                            repeats)
    # There are cases when the repeats are 1-d tensor with multiple repeats, but dim
    # provided along one of the dynamic axes provided. A simple example would be
    # input.shape -> [1, 1, *] where * represents the dynamic axes, and dim = 2
    # Now, repeat interleaving can be performed in pytorch when the value of * matches
    # with the number of elements in repeat, for example if * -> 2, number of repeats
    # should be 2 as well.
    else:
        return torch.onnx.symbolic_opset9.repeat_interleave(
            g, self, repeats, final_dim)

    reps_like = g.op("ConstantOfShape",
                     g.op("Shape", repeats),
                     value_t=torch.tensor([1], dtype=torch.long))
    r_splits = split(g, repeats, reps_like, 0)
    i_splits = split(g, input, reps_like, dim)

    output_sizes[dim], input_sizes[dim] = -1, 1

    # Create a loop to iterate over each value along the dimension
    # and perform individual interleaving using the repeats tensor
    # Loop is of the following pattern
    # input (trip_count, cond)
    #   int trip_count = ...;
    #   bool cond = ...;
    #   for (int i=0; i < trip_count && cond; ++i) {
    #     cond = ...;
    #   }

    # Loop conditions
    loop_condition = g.op("Constant", value_t=torch.tensor(1))
    loop_condition = g.op("Cast", loop_condition, to_i=9)
    loop_len = reps

    # Create an empty sequence to store final expansions
    final_splits = g.op("SequenceEmpty")
    loop = g.op("Loop", loop_len, loop_condition, final_splits)

    # Loop inputs
    loop_block = _add_block(loop.node())
    block_input_iter = _add_input_to_block(loop_block)
    cond = _add_input_to_block(loop_block)
    final_splits = _add_input_to_block(loop_block)

    r_split = loop_block.op("SequenceAt", r_splits, block_input_iter)
    i_split = loop_block.op("SequenceAt", i_splits, block_input_iter)

    i_split = unsqueeze(loop_block, i_split, dim + 1)
    r_concat = [
        loop_block.op("Constant",
                      value_t=torch.LongTensor(input_sizes[:dim + 1])),
        r_split,
        loop_block.op("Constant",
                      value_t=torch.LongTensor(input_sizes[dim + 1:]))
    ]
    r_concat = loop_block.op("Concat", *r_concat, axis_i=0)
    i_split = expand(loop_block, i_split, r_concat, None)
    i_split = sym_help._reshape_helper(
        loop_block, i_split,
        g.op("Constant", value_t=torch.LongTensor(output_sizes)))
    final_splits = loop_block.op("SequenceInsert", final_splits, i_split)

    # Loop outputs
    cond_out = loop_block.op("Cast", loop_condition, to_i=9)
    _add_output_to_block(loop_block, cond_out)
    _add_output_to_block(loop_block, final_splits)

    loop_out = loop.node().output()
    loop_out = g.op("ConcatFromSequence", loop_out, axis_i=dim)
    return loop_out
Exemple #10
0
def reshape(g, self, shape):
    # NOTE: Due to bug in ORT https://github.com/microsoft/onnxruntime/issues/10664
    #       Reshape export cannot utilize the new allowzero attribute introduced in opset 14.
    return sym_help._reshape_helper(g, self, shape, allowzero=0)
Exemple #11
0
def repeat_interleave(g, self, repeats, dim=None, output_size=None):
    input = self
    final_dim = dim
    # if dim is None flatten
    # By default, use the flattened input array, and return a flat output array
    if sym_help._is_none(dim):
        input = sym_help._reshape_helper(
            g, self, g.op("Constant", value_t=torch.tensor([-1])))
        dim = 0
    else:
        dim = sym_help._maybe_get_scalar(dim)

    repeats_dim = sym_help._get_tensor_rank(repeats)
    repeats_sizes = sym_help._get_tensor_sizes(repeats)
    input_sizes = sym_help._get_tensor_sizes(input)
    if repeats_dim is None:
        raise RuntimeError(
            "Unsupported: ONNX export of repeat_interleave for unknown "
            "repeats rank.")
    if repeats_sizes is None:
        raise RuntimeError(
            "Unsupported: ONNX export of repeat_interleave for unknown "
            "repeats size.")
    if input_sizes is None:
        raise RuntimeError(
            "Unsupported: ONNX export of repeat_interleave for unknown "
            "input size.")
    # Handle cases where dim is negative
    if dim < 0:
        dim += len(input_sizes)

    output_sizes = input_sizes.copy()
    perm_i = [0]
    for idx, input_size in enumerate(input_sizes):
        perm_i.append(idx + 1)
        if input_size is None:
            output_sizes[idx], input_sizes[idx] = 0, -1
    perm_i[0], perm_i[dim] = perm_i[dim], perm_i[0]

    # Cases when repeats is a single value tensor and dim has unknown input size
    if (repeats_dim == 0 or
        (repeats_dim == 1
         and repeats_sizes[0] == 1)) and output_sizes[dim] == 0:
        if not sym_help._is_tensor(repeats):
            repeats = g.op("Constant", value_t=torch.LongTensor(repeats))
        reps = sym_help._size_helper(g, input, dim)
        reps = unsqueeze(g, reps, 0)
        repeats = g.op("Expand", repeats, reps)
    # There are cases when the repeats are 1-d tensor with multiple repeats, but dim
    # provided along one of the dynamic axes provided. A simple example would be
    # input.shape -> [1, 1, *] where * represents the dynamic axes, and dim = 2
    # Now, repeat interleaving can be performed in pytorch when the value of * matches
    # with the number of elements in repeat, for example if * -> 2, number of repeats
    # should be 2 as well.
    else:
        return torch.onnx.symbolic_opset9.repeat_interleave(
            g, self, repeats, final_dim)

    reps_like = g.op("ConstantOfShape",
                     g.op("Shape", repeats),
                     value_t=torch.tensor([1], dtype=torch.long))
    r_splits = split(g, repeats, reps_like, 0)
    i_splits = split(g, input, reps_like, dim)

    output_sizes[dim], input_sizes[dim] = -1, 1

    # Create a loop to iterate over each value along the dimension
    # and perform individual interleaving using the repeats tensor
    # Loop is of the following pattern
    # input (trip_count, cond)
    #   int trip_count = ...;
    #   bool cond = ...;
    #   for (int i=0; i < trip_count && cond; ++i) {
    #     cond = ...;
    #   }

    # Loop conditions
    loop_condition = g.op("Constant", value_t=torch.tensor(1))
    loop_condition = g.op("Cast", loop_condition, to_i=9)
    loop_len = reps
    loop = g.op("Loop", loop_len, loop_condition)

    # Loop inputs
    loop_block = _add_block(loop.node())
    block_input_iter = _add_input_to_block(loop_block)
    cond = _add_input_to_block(loop_block)

    r_split = loop_block.op("SequenceAt", r_splits, block_input_iter)
    i_split = loop_block.op("SequenceAt", i_splits, block_input_iter)

    i_split = unsqueeze(loop_block, i_split, dim + 1)
    r_concat = [
        loop_block.op("Constant",
                      value_t=torch.LongTensor(input_sizes[:dim + 1])),
        r_split,
        loop_block.op("Constant",
                      value_t=torch.LongTensor(input_sizes[dim + 1:]))
    ]
    r_concat = loop_block.op("Concat", *r_concat, axis_i=0)
    i_split = expand(loop_block, i_split, r_concat, None)
    i_split = sym_help._reshape_helper(
        loop_block, i_split,
        g.op("Constant", value_t=torch.LongTensor(output_sizes)))

    # Loop outputs
    cond_out = loop_block.op("Cast", loop_condition, to_i=9)
    _add_output_to_block(loop_block, cond_out)
    _add_output_to_block(loop_block, i_split)
    loop_out = loop.node().output()

    # In this loop, the outputs are scan outputs and are concatenated along
    # the zero'th dimension (by default). In order to avoid this and concatenate
    # along the dimension provided, some post-processing is required
    loop_out = g.op("Transpose", loop_out, perm_i=perm_i)
    return sym_help._reshape_helper(
        g, loop_out, g.op("Constant", value_t=torch.LongTensor(output_sizes)))
Exemple #12
0
def reshape(g, self, shape):
    return sym_help._reshape_helper(g, self, shape)