Exemple #1
0
    def train(self) -> None:
        r"""Main method for DD-PPO.

        Returns:
            None
        """
        self.local_rank, tcp_store = init_distrib_slurm(
            self.config.RL.DDPPO.distrib_backend)
        add_signal_handlers()

        # Stores the number of workers that have finished their rollout
        num_rollouts_done_store = distrib.PrefixStore("rollout_tracker",
                                                      tcp_store)
        num_rollouts_done_store.set("num_done", "0")

        self.world_rank = distrib.get_rank()
        self.world_size = distrib.get_world_size()

        random.seed(self.config.TASK_CONFIG.SEED + self.world_rank)
        np.random.seed(self.config.TASK_CONFIG.SEED + self.world_rank)

        self.config.defrost()
        self.config.TORCH_GPU_ID = self.local_rank
        self.config.SIMULATOR_GPU_ID = self.local_rank
        self.config.freeze()

        if torch.cuda.is_available():
            self.device = torch.device("cuda", self.local_rank)
            torch.cuda.set_device(self.device)
        else:
            self.device = torch.device("cpu")

        self.envs = construct_envs(self.config,
                                   get_env_class(self.config.ENV_NAME))

        ppo_cfg = self.config.RL.PPO
        if (not os.path.isdir(self.config.CHECKPOINT_FOLDER)
                and self.world_rank == 0):
            os.makedirs(self.config.CHECKPOINT_FOLDER)

        self._setup_actor_critic_agent(ppo_cfg)
        self.agent.init_distributed(find_unused_params=True)

        if self.world_rank == 0:
            logger.info("agent number of trainable parameters: {}".format(
                sum(param.numel() for param in self.agent.parameters()
                    if param.requires_grad)))

        observations = self.envs.reset()
        batch = batch_obs(observations, device=self.device)

        obs_space = self.envs.observation_spaces[0]
        if self._static_encoder:
            self._encoder = self.actor_critic.net.visual_encoder
            obs_space = SpaceDict({
                "visual_features":
                spaces.Box(
                    low=np.finfo(np.float32).min,
                    high=np.finfo(np.float32).max,
                    shape=self._encoder.output_shape,
                    dtype=np.float32,
                ),
                **obs_space.spaces,
            })
            with torch.no_grad():
                batch["visual_features"] = self._encoder(batch)

        rollouts = RolloutStorage(
            ppo_cfg.num_steps,
            self.envs.num_envs,
            obs_space,
            self.envs.action_spaces[0],
            ppo_cfg.hidden_size,
            num_recurrent_layers=self.actor_critic.net.num_recurrent_layers,
        )
        rollouts.to(self.device)

        for sensor in rollouts.observations:
            rollouts.observations[sensor][0].copy_(batch[sensor])

        # batch and observations may contain shared PyTorch CUDA
        # tensors.  We must explicitly clear them here otherwise
        # they will be kept in memory for the entire duration of training!
        batch = None
        observations = None

        current_episode_reward = torch.zeros(self.envs.num_envs,
                                             1,
                                             device=self.device)
        running_episode_stats = dict(
            count=torch.zeros(self.envs.num_envs, 1, device=self.device),
            reward=torch.zeros(self.envs.num_envs, 1, device=self.device),
        )
        window_episode_stats = defaultdict(
            lambda: deque(maxlen=ppo_cfg.reward_window_size))

        t_start = time.time()
        env_time = 0
        pth_time = 0
        count_steps = 0
        count_checkpoints = 0
        start_update = 0
        prev_time = 0

        lr_scheduler = LambdaLR(
            optimizer=self.agent.optimizer,
            lr_lambda=lambda x: linear_decay(x, self.config.NUM_UPDATES),
        )

        interrupted_state = load_interrupted_state()
        if interrupted_state is not None:
            self.agent.load_state_dict(interrupted_state["state_dict"])
            self.agent.optimizer.load_state_dict(
                interrupted_state["optim_state"])
            lr_scheduler.load_state_dict(interrupted_state["lr_sched_state"])

            requeue_stats = interrupted_state["requeue_stats"]
            env_time = requeue_stats["env_time"]
            pth_time = requeue_stats["pth_time"]
            count_steps = requeue_stats["count_steps"]
            count_checkpoints = requeue_stats["count_checkpoints"]
            start_update = requeue_stats["start_update"]
            prev_time = requeue_stats["prev_time"]

        with (TensorboardWriter(self.config.TENSORBOARD_DIR,
                                flush_secs=self.flush_secs)
              if self.world_rank == 0 else contextlib.suppress()) as writer:
            for update in range(start_update, self.config.NUM_UPDATES):
                if ppo_cfg.use_linear_lr_decay:
                    lr_scheduler.step()

                if ppo_cfg.use_linear_clip_decay:
                    self.agent.clip_param = ppo_cfg.clip_param * linear_decay(
                        update, self.config.NUM_UPDATES)

                if EXIT.is_set():
                    self.envs.close()

                    if REQUEUE.is_set() and self.world_rank == 0:
                        requeue_stats = dict(
                            env_time=env_time,
                            pth_time=pth_time,
                            count_steps=count_steps,
                            count_checkpoints=count_checkpoints,
                            start_update=update,
                            prev_time=(time.time() - t_start) + prev_time,
                        )
                        save_interrupted_state(
                            dict(
                                state_dict=self.agent.state_dict(),
                                optim_state=self.agent.optimizer.state_dict(),
                                lr_sched_state=lr_scheduler.state_dict(),
                                config=self.config,
                                requeue_stats=requeue_stats,
                            ))

                    requeue_job()
                    return

                count_steps_delta = 0
                self.agent.eval()
                for step in range(ppo_cfg.num_steps):

                    (
                        delta_pth_time,
                        delta_env_time,
                        delta_steps,
                    ) = self._collect_rollout_step(rollouts,
                                                   current_episode_reward,
                                                   running_episode_stats)
                    pth_time += delta_pth_time
                    env_time += delta_env_time
                    count_steps_delta += delta_steps

                    # This is where the preemption of workers happens.  If a
                    # worker detects it will be a straggler, it preempts itself!
                    if (step >=
                            ppo_cfg.num_steps * self.SHORT_ROLLOUT_THRESHOLD
                        ) and int(num_rollouts_done_store.get("num_done")) > (
                            self.config.RL.DDPPO.sync_frac * self.world_size):
                        break

                num_rollouts_done_store.add("num_done", 1)

                self.agent.train()
                if self._static_encoder:
                    self._encoder.eval()

                (
                    delta_pth_time,
                    value_loss,
                    action_loss,
                    dist_entropy,
                ) = self._update_agent(ppo_cfg, rollouts)
                pth_time += delta_pth_time

                stats_ordering = list(sorted(running_episode_stats.keys()))
                stats = torch.stack(
                    [running_episode_stats[k] for k in stats_ordering], 0)
                distrib.all_reduce(stats)

                for i, k in enumerate(stats_ordering):
                    window_episode_stats[k].append(stats[i].clone())

                stats = torch.tensor(
                    [value_loss, action_loss, count_steps_delta],
                    device=self.device,
                )
                distrib.all_reduce(stats)
                count_steps += stats[2].item()

                if self.world_rank == 0:
                    num_rollouts_done_store.set("num_done", "0")

                    losses = [
                        stats[0].item() / self.world_size,
                        stats[1].item() / self.world_size,
                    ]
                    deltas = {
                        k: ((v[-1] - v[0]).sum().item()
                            if len(v) > 1 else v[0].sum().item())
                        for k, v in window_episode_stats.items()
                    }
                    deltas["count"] = max(deltas["count"], 1.0)

                    writer.add_scalar(
                        "reward",
                        deltas["reward"] / deltas["count"],
                        count_steps,
                    )

                    # Check to see if there are any metrics
                    # that haven't been logged yet
                    metrics = {
                        k: v / deltas["count"]
                        for k, v in deltas.items()
                        if k not in {"reward", "count"}
                    }
                    if len(metrics) > 0:
                        writer.add_scalars("metrics", metrics, count_steps)

                    writer.add_scalars(
                        "losses",
                        {k: l
                         for l, k in zip(losses, ["value", "policy"])},
                        count_steps,
                    )

                    # log stats
                    if update > 0 and update % self.config.LOG_INTERVAL == 0:
                        logger.info("update: {}\tfps: {:.3f}\t".format(
                            update,
                            count_steps /
                            ((time.time() - t_start) + prev_time),
                        ))

                        logger.info(
                            "update: {}\tenv-time: {:.3f}s\tpth-time: {:.3f}s\t"
                            "frames: {}".format(update, env_time, pth_time,
                                                count_steps))
                        logger.info("Average window size: {}  {}".format(
                            len(window_episode_stats["count"]),
                            "  ".join(
                                "{}: {:.3f}".format(k, v / deltas["count"])
                                for k, v in deltas.items() if k != "count"),
                        ))

                    # checkpoint model
                    if update % self.config.CHECKPOINT_INTERVAL == 0:
                        self.save_checkpoint(
                            f"ckpt.{count_checkpoints}.pth",
                            dict(step=count_steps),
                        )
                        count_checkpoints += 1

            self.envs.close()
Exemple #2
0
            print(
                'Resuming from epoch %d, validation loss %f, and best cider %f'
                % (data['epoch'], data['val_loss'], data['best_cider']))

        torch.save(
            {
                'torch_rng_state': torch.get_rng_state(),
                'cuda_rng_state': torch.cuda.get_rng_state(),
                'numpy_rng_state': np.random.get_state(),
                'random_rng_state': random.getstate(),
                'epoch': e,
                'val_loss': val_loss,
                'val_cider': val_cider,
                'state_dict': model.state_dict(),
                'optimizer': optim.state_dict(),
                'scheduler': scheduler.state_dict(),
                'patience': patience,
                'best_cider': best_cider,
                'use_rl': use_rl,
            }, 'saved_models/%s_last.pth' % args.exp_name)

        if switch_to_rl:
            copyfile('saved_models/%s_last.pth' % args.exp_name,
                     'saved_models/%s_beforerl.pth' % args.exp_name)

        if best:
            copyfile('saved_models/%s_last.pth' % args.exp_name,
                     'saved_models/%s_best.pth' % args.exp_name)

        if exit_train:
            writer.close()
def main(args):
    logger = CompleteLogger(args.log, args.phase)
    print(args)

    if args.seed is not None:
        random.seed(args.seed)
        torch.manual_seed(args.seed)
        cudnn.deterministic = True
        warnings.warn('You have chosen to seed training. '
                      'This will turn on the CUDNN deterministic setting, '
                      'which can slow down your training considerably! '
                      'You may see unexpected behavior when restarting '
                      'from checkpoints.')

    cudnn.benchmark = True

    # Data loading code
    train_transform = T.Compose([
        T.RandomResizedCrop(size=args.train_size,
                            ratio=args.resize_ratio,
                            scale=(0.5, 1.)),
        T.RandomHorizontalFlip(),
        T.ToTensor(),
        T.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
    ])
    source_dataset = datasets.__dict__[args.source]
    train_source_dataset = source_dataset(root=args.source_root,
                                          transforms=train_transform)
    train_source_loader = DataLoader(train_source_dataset,
                                     batch_size=args.batch_size,
                                     shuffle=True,
                                     num_workers=args.workers,
                                     pin_memory=True,
                                     drop_last=True)

    target_dataset = datasets.__dict__[args.target]
    train_target_dataset = target_dataset(root=args.target_root,
                                          transforms=train_transform)
    train_target_loader = DataLoader(train_target_dataset,
                                     batch_size=args.batch_size,
                                     shuffle=True,
                                     num_workers=args.workers,
                                     pin_memory=True,
                                     drop_last=True)

    train_source_iter = ForeverDataIterator(train_source_loader)
    train_target_iter = ForeverDataIterator(train_target_loader)

    # define networks (both generators and discriminators)
    netG_S2T = cyclegan.generator.__dict__[args.netG](
        ngf=args.ngf, norm=args.norm, use_dropout=False).to(device)
    netG_T2S = cyclegan.generator.__dict__[args.netG](
        ngf=args.ngf, norm=args.norm, use_dropout=False).to(device)
    netD_S = cyclegan.discriminator.__dict__[args.netD](
        ndf=args.ndf, norm=args.norm).to(device)
    netD_T = cyclegan.discriminator.__dict__[args.netD](
        ndf=args.ndf, norm=args.norm).to(device)

    # create image buffer to store previously generated images
    fake_S_pool = ImagePool(args.pool_size)
    fake_T_pool = ImagePool(args.pool_size)

    # define optimizer and lr scheduler
    optimizer_G = Adam(itertools.chain(netG_S2T.parameters(),
                                       netG_T2S.parameters()),
                       lr=args.lr,
                       betas=(args.beta1, 0.999))
    optimizer_D = Adam(itertools.chain(netD_S.parameters(),
                                       netD_T.parameters()),
                       lr=args.lr,
                       betas=(args.beta1, 0.999))
    lr_decay_function = lambda epoch: 1.0 - max(0, epoch - args.epochs
                                                ) / float(args.epochs_decay)
    lr_scheduler_G = LambdaLR(optimizer_G, lr_lambda=lr_decay_function)
    lr_scheduler_D = LambdaLR(optimizer_D, lr_lambda=lr_decay_function)

    # optionally resume from a checkpoint
    if args.resume:
        print("Resume from", args.resume)
        checkpoint = torch.load(args.resume, map_location='cpu')
        netG_S2T.load_state_dict(checkpoint['netG_S2T'])
        netG_T2S.load_state_dict(checkpoint['netG_T2S'])
        netD_S.load_state_dict(checkpoint['netD_S'])
        netD_T.load_state_dict(checkpoint['netD_T'])
        optimizer_G.load_state_dict(checkpoint['optimizer_G'])
        optimizer_D.load_state_dict(checkpoint['optimizer_D'])
        lr_scheduler_G.load_state_dict(checkpoint['lr_scheduler_G'])
        lr_scheduler_D.load_state_dict(checkpoint['lr_scheduler_D'])
        args.start_epoch = checkpoint['epoch'] + 1

    if args.phase == 'test':
        transform = T.Compose([
            T.Resize(image_size=args.test_input_size),
            T.wrapper(cyclegan.transform.Translation)(netG_S2T, device),
        ])
        train_source_dataset.translate(transform, args.translated_root)
        return

    # define loss function
    criterion_gan = cyclegan.LeastSquaresGenerativeAdversarialLoss()
    criterion_cycle = nn.L1Loss()
    criterion_identity = nn.L1Loss()

    # define visualization function
    tensor_to_image = Compose(
        [Denormalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
         ToPILImage()])

    def visualize(image, name):
        """
        Args:
            image (tensor): image in shape 3 x H x W
            name: name of the saving image
        """
        tensor_to_image(image).save(
            logger.get_image_path("{}.png".format(name)))

    # start training
    for epoch in range(args.start_epoch, args.epochs + args.epochs_decay):
        logger.set_epoch(epoch)
        print(lr_scheduler_G.get_lr())

        # train for one epoch
        train(train_source_iter, train_target_iter, netG_S2T, netG_T2S, netD_S,
              netD_T, criterion_gan, criterion_cycle, criterion_identity,
              optimizer_G, optimizer_D, fake_S_pool, fake_T_pool, epoch,
              visualize, args)

        # update learning rates
        lr_scheduler_G.step()
        lr_scheduler_D.step()

        # save checkpoint
        torch.save(
            {
                'netG_S2T': netG_S2T.state_dict(),
                'netG_T2S': netG_T2S.state_dict(),
                'netD_S': netD_S.state_dict(),
                'netD_T': netD_T.state_dict(),
                'optimizer_G': optimizer_G.state_dict(),
                'optimizer_D': optimizer_D.state_dict(),
                'lr_scheduler_G': lr_scheduler_G.state_dict(),
                'lr_scheduler_D': lr_scheduler_D.state_dict(),
                'epoch': epoch,
                'args': args
            }, logger.get_checkpoint_path(epoch))

    if args.translated_root is not None:
        transform = T.Compose([
            T.Resize(image_size=args.test_input_size),
            T.wrapper(cyclegan.transform.Translation)(netG_S2T, device),
        ])
        train_source_dataset.translate(transform, args.translated_root)

    logger.close()
Exemple #4
0
def main(args: argparse.Namespace):
    logger = CompleteLogger(args.log, args.phase)

    if args.seed is not None:
        random.seed(args.seed)
        torch.manual_seed(args.seed)
        cudnn.deterministic = True
        warnings.warn('You have chosen to seed training. '
                      'This will turn on the CUDNN deterministic setting, '
                      'which can slow down your training considerably! '
                      'You may see unexpected behavior when restarting '
                      'from checkpoints.')

    cudnn.benchmark = True

    # Data loading code
    normalize = T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    train_transform = T.Compose([
        T.RandomRotation(args.rotation),
        T.RandomResizedCrop(size=args.image_size, scale=args.resize_scale),
        T.ColorJitter(brightness=0.25, contrast=0.25, saturation=0.25),
        T.GaussianBlur(),
        T.ToTensor(), normalize
    ])
    val_transform = T.Compose(
        [T.Resize(args.image_size),
         T.ToTensor(), normalize])
    image_size = (args.image_size, args.image_size)
    heatmap_size = (args.heatmap_size, args.heatmap_size)
    source_dataset = datasets.__dict__[args.source]
    train_source_dataset = source_dataset(root=args.source_root,
                                          transforms=train_transform,
                                          image_size=image_size,
                                          heatmap_size=heatmap_size)
    train_source_loader = DataLoader(train_source_dataset,
                                     batch_size=args.batch_size,
                                     shuffle=True,
                                     num_workers=args.workers,
                                     pin_memory=True,
                                     drop_last=True)
    val_source_dataset = source_dataset(root=args.source_root,
                                        split='test',
                                        transforms=val_transform,
                                        image_size=image_size,
                                        heatmap_size=heatmap_size)
    val_source_loader = DataLoader(val_source_dataset,
                                   batch_size=args.batch_size,
                                   shuffle=False,
                                   pin_memory=True)

    target_dataset = datasets.__dict__[args.target]
    train_target_dataset = target_dataset(root=args.target_root,
                                          transforms=train_transform,
                                          image_size=image_size,
                                          heatmap_size=heatmap_size)
    train_target_loader = DataLoader(train_target_dataset,
                                     batch_size=args.batch_size,
                                     shuffle=True,
                                     num_workers=args.workers,
                                     pin_memory=True,
                                     drop_last=True)
    val_target_dataset = target_dataset(root=args.target_root,
                                        split='test',
                                        transforms=val_transform,
                                        image_size=image_size,
                                        heatmap_size=heatmap_size)
    val_target_loader = DataLoader(val_target_dataset,
                                   batch_size=args.batch_size,
                                   shuffle=False,
                                   pin_memory=True)

    print("Source train:", len(train_source_loader))
    print("Target train:", len(train_target_loader))
    print("Source test:", len(val_source_loader))
    print("Target test:", len(val_target_loader))

    train_source_iter = ForeverDataIterator(train_source_loader)
    train_target_iter = ForeverDataIterator(train_target_loader)

    # create model
    backbone = models.__dict__[args.arch](pretrained=True)
    upsampling = Upsampling(backbone.out_features)
    num_keypoints = train_source_dataset.num_keypoints
    model = RegDAPoseResNet(backbone,
                            upsampling,
                            256,
                            num_keypoints,
                            num_head_layers=args.num_head_layers,
                            finetune=True).to(device)
    # define loss function
    criterion = JointsKLLoss()
    pseudo_label_generator = PseudoLabelGenerator(num_keypoints,
                                                  args.heatmap_size,
                                                  args.heatmap_size)
    regression_disparity = RegressionDisparity(pseudo_label_generator,
                                               JointsKLLoss(epsilon=1e-7))

    # define optimizer and lr scheduler
    optimizer_f = SGD([
        {
            'params': backbone.parameters(),
            'lr': 0.1
        },
        {
            'params': upsampling.parameters(),
            'lr': 0.1
        },
    ],
                      lr=0.1,
                      momentum=args.momentum,
                      weight_decay=args.wd,
                      nesterov=True)
    optimizer_h = SGD(model.head.parameters(),
                      lr=1.,
                      momentum=args.momentum,
                      weight_decay=args.wd,
                      nesterov=True)
    optimizer_h_adv = SGD(model.head_adv.parameters(),
                          lr=1.,
                          momentum=args.momentum,
                          weight_decay=args.wd,
                          nesterov=True)
    lr_decay_function = lambda x: args.lr * (1. + args.lr_gamma * float(x))**(
        -args.lr_decay)
    lr_scheduler_f = LambdaLR(optimizer_f, lr_decay_function)
    lr_scheduler_h = LambdaLR(optimizer_h, lr_decay_function)
    lr_scheduler_h_adv = LambdaLR(optimizer_h_adv, lr_decay_function)
    start_epoch = 0

    if args.resume is None:
        if args.pretrain is None:
            # first pretrain the backbone and upsampling
            print("Pretraining the model on source domain.")
            args.pretrain = logger.get_checkpoint_path('pretrain')
            pretrained_model = PoseResNet(backbone, upsampling, 256,
                                          num_keypoints, True).to(device)
            optimizer = SGD(pretrained_model.get_parameters(lr=args.lr),
                            momentum=args.momentum,
                            weight_decay=args.wd,
                            nesterov=True)
            lr_scheduler = MultiStepLR(optimizer, args.lr_step, args.lr_factor)
            best_acc = 0
            for epoch in range(args.pretrain_epochs):
                lr_scheduler.step()
                print(lr_scheduler.get_lr())

                pretrain(train_source_iter, pretrained_model, criterion,
                         optimizer, epoch, args)
                source_val_acc = validate(val_source_loader, pretrained_model,
                                          criterion, None, args)

                # remember best acc and save checkpoint
                if source_val_acc['all'] > best_acc:
                    best_acc = source_val_acc['all']
                    torch.save({'model': pretrained_model.state_dict()},
                               args.pretrain)
                print("Source: {} best: {}".format(source_val_acc['all'],
                                                   best_acc))

        # load from the pretrained checkpoint
        pretrained_dict = torch.load(args.pretrain,
                                     map_location='cpu')['model']
        model_dict = model.state_dict()
        # remove keys from pretrained dict that doesn't appear in model dict
        pretrained_dict = {
            k: v
            for k, v in pretrained_dict.items() if k in model_dict
        }
        model.load_state_dict(pretrained_dict, strict=False)
    else:
        # optionally resume from a checkpoint
        checkpoint = torch.load(args.resume, map_location='cpu')
        model.load_state_dict(checkpoint['model'])
        optimizer_f.load_state_dict(checkpoint['optimizer_f'])
        optimizer_h.load_state_dict(checkpoint['optimizer_h'])
        optimizer_h_adv.load_state_dict(checkpoint['optimizer_h_adv'])
        lr_scheduler_f.load_state_dict(checkpoint['lr_scheduler_f'])
        lr_scheduler_h.load_state_dict(checkpoint['lr_scheduler_h'])
        lr_scheduler_h_adv.load_state_dict(checkpoint['lr_scheduler_h_adv'])
        start_epoch = checkpoint['epoch'] + 1

    # define visualization function
    tensor_to_image = Compose([
        Denormalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
        ToPILImage()
    ])

    def visualize(image, keypoint2d, name, heatmaps=None):
        """
        Args:
            image (tensor): image in shape 3 x H x W
            keypoint2d (tensor): keypoints in shape K x 2
            name: name of the saving image
        """
        train_source_dataset.visualize(
            tensor_to_image(image), keypoint2d,
            logger.get_image_path("{}.jpg".format(name)))

    if args.phase == 'test':
        # evaluate on validation set
        source_val_acc = validate(val_source_loader, model, criterion, None,
                                  args)
        target_val_acc = validate(val_target_loader, model, criterion,
                                  visualize, args)
        print("Source: {:4.3f} Target: {:4.3f}".format(source_val_acc['all'],
                                                       target_val_acc['all']))
        for name, acc in target_val_acc.items():
            print("{}: {:4.3f}".format(name, acc))
        return

    # start training
    best_acc = 0
    print("Start regression domain adaptation.")
    for epoch in range(start_epoch, args.epochs):
        logger.set_epoch(epoch)
        print(lr_scheduler_f.get_lr(), lr_scheduler_h.get_lr(),
              lr_scheduler_h_adv.get_lr())

        # train for one epoch
        train(train_source_iter, train_target_iter, model, criterion,
              regression_disparity, optimizer_f, optimizer_h, optimizer_h_adv,
              lr_scheduler_f, lr_scheduler_h, lr_scheduler_h_adv, epoch,
              visualize if args.debug else None, args)

        # evaluate on validation set
        source_val_acc = validate(val_source_loader, model, criterion, None,
                                  args)
        target_val_acc = validate(val_target_loader, model, criterion,
                                  visualize if args.debug else None, args)

        # remember best acc and save checkpoint
        torch.save(
            {
                'model': model.state_dict(),
                'optimizer_f': optimizer_f.state_dict(),
                'optimizer_h': optimizer_h.state_dict(),
                'optimizer_h_adv': optimizer_h_adv.state_dict(),
                'lr_scheduler_f': lr_scheduler_f.state_dict(),
                'lr_scheduler_h': lr_scheduler_h.state_dict(),
                'lr_scheduler_h_adv': lr_scheduler_h_adv.state_dict(),
                'epoch': epoch,
                'args': args
            }, logger.get_checkpoint_path(epoch))
        if target_val_acc['all'] > best_acc:
            shutil.copy(logger.get_checkpoint_path(epoch),
                        logger.get_checkpoint_path('best'))
            best_acc = target_val_acc['all']
        print("Source: {:4.3f} Target: {:4.3f} Target(best): {:4.3f}".format(
            source_val_acc['all'], target_val_acc['all'], best_acc))
        for name, acc in target_val_acc.items():
            print("{}: {:4.3f}".format(name, acc))

    logger.close()
def main(args: argparse.Namespace):
    logger = CompleteLogger(args.log, args.phase)
    print(args)

    if args.seed is not None:
        random.seed(args.seed)
        torch.manual_seed(args.seed)
        cudnn.deterministic = True
        warnings.warn('You have chosen to seed training. '
                      'This will turn on the CUDNN deterministic setting, '
                      'which can slow down your training considerably! '
                      'You may see unexpected behavior when restarting '
                      'from checkpoints.')

    cudnn.benchmark = True

    # Data loading code
    source_dataset = datasets.__dict__[args.source]
    train_source_dataset = source_dataset(
        root=args.source_root,
        transforms=T.Compose([
            T.RandomResizedCrop(size=args.train_size,
                                ratio=args.resize_ratio,
                                scale=(0.5, 1.)),
            T.ColorJitter(brightness=0.3, contrast=0.3),
            T.RandomHorizontalFlip(),
            T.NormalizeAndTranspose(),
        ]),
    )
    train_source_loader = DataLoader(train_source_dataset,
                                     batch_size=args.batch_size,
                                     shuffle=True,
                                     num_workers=args.workers,
                                     pin_memory=True,
                                     drop_last=True)

    target_dataset = datasets.__dict__[args.target]
    train_target_dataset = target_dataset(
        root=args.target_root,
        transforms=T.Compose([
            T.RandomResizedCrop(size=args.train_size,
                                ratio=(2., 2.),
                                scale=(0.5, 1.)),
            T.RandomHorizontalFlip(),
            T.NormalizeAndTranspose(),
        ]),
    )
    train_target_loader = DataLoader(train_target_dataset,
                                     batch_size=args.batch_size,
                                     shuffle=True,
                                     num_workers=args.workers,
                                     pin_memory=True,
                                     drop_last=True)
    val_target_dataset = target_dataset(
        root=args.target_root,
        split='val',
        transforms=T.Compose([
            T.Resize(image_size=args.test_input_size,
                     label_size=args.test_output_size),
            T.NormalizeAndTranspose(),
        ]),
    )
    val_target_loader = DataLoader(val_target_dataset,
                                   batch_size=1,
                                   shuffle=False,
                                   pin_memory=True)

    train_source_iter = ForeverDataIterator(train_source_loader)
    train_target_iter = ForeverDataIterator(train_target_loader)

    # create model
    num_classes = train_source_dataset.num_classes
    model = models.__dict__[args.arch](num_classes=num_classes).to(device)
    discriminator = Discriminator(num_classes=num_classes).to(device)

    # define optimizer and lr scheduler
    optimizer = SGD(model.get_parameters(),
                    lr=args.lr,
                    momentum=args.momentum,
                    weight_decay=args.weight_decay)
    optimizer_d = Adam(discriminator.parameters(),
                       lr=args.lr_d,
                       betas=(0.9, 0.99))
    lr_scheduler = LambdaLR(
        optimizer, lambda x: args.lr *
        (1. - float(x) / args.epochs / args.iters_per_epoch)**(args.lr_power))
    lr_scheduler_d = LambdaLR(
        optimizer_d, lambda x:
        (1. - float(x) / args.epochs / args.iters_per_epoch)**(args.lr_power))

    # optionally resume from a checkpoint
    if args.resume:
        checkpoint = torch.load(args.resume, map_location='cpu')
        model.load_state_dict(checkpoint['model'])
        discriminator.load_state_dict(checkpoint['discriminator'])
        optimizer.load_state_dict(checkpoint['optimizer'])
        lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
        optimizer_d.load_state_dict(checkpoint['optimizer_d'])
        lr_scheduler_d.load_state_dict(checkpoint['lr_scheduler_d'])
        args.start_epoch = checkpoint['epoch'] + 1

    # define loss function (criterion)
    criterion = torch.nn.CrossEntropyLoss(
        ignore_index=args.ignore_label).to(device)
    dann = DomainAdversarialEntropyLoss(discriminator)
    interp_train = nn.Upsample(size=args.train_size[::-1],
                               mode='bilinear',
                               align_corners=True)
    interp_val = nn.Upsample(size=args.test_output_size[::-1],
                             mode='bilinear',
                             align_corners=True)

    # define visualization function
    decode = train_source_dataset.decode_target

    def visualize(image, pred, label, prefix):
        """
        Args:
            image (tensor): 3 x H x W
            pred (tensor): C x H x W
            label (tensor): H x W
            prefix: prefix of the saving image
        """
        image = image.detach().cpu().numpy()
        pred = pred.detach().max(dim=0)[1].cpu().numpy()
        label = label.cpu().numpy()
        for tensor, name in [
            (Image.fromarray(np.uint8(DeNormalizeAndTranspose()(image))),
             "image"), (decode(label), "label"), (decode(pred), "pred")
        ]:
            tensor.save(logger.get_image_path("{}_{}.png".format(prefix,
                                                                 name)))

    if args.phase == 'test':
        confmat = validate(val_target_loader, model, interp_val, criterion,
                           visualize, args)
        print(confmat)
        return

    # start training
    best_iou = 0.
    for epoch in range(args.start_epoch, args.epochs):
        logger.set_epoch(epoch)
        print(lr_scheduler.get_lr(), lr_scheduler_d.get_lr())
        # train for one epoch
        train(train_source_iter, train_target_iter, model, interp_train,
              criterion, dann, optimizer, lr_scheduler, optimizer_d,
              lr_scheduler_d, epoch, visualize if args.debug else None, args)

        # evaluate on validation set
        confmat = validate(val_target_loader, model, interp_val, criterion,
                           None, args)
        print(confmat.format(train_source_dataset.classes))
        acc_global, acc, iu = confmat.compute()

        # calculate the mean iou over partial classes
        indexes = [
            train_source_dataset.classes.index(name)
            for name in train_source_dataset.evaluate_classes
        ]
        iu = iu[indexes]
        mean_iou = iu.mean()

        # remember best acc@1 and save checkpoint
        torch.save(
            {
                'model': model.state_dict(),
                'discriminator': discriminator.state_dict(),
                'optimizer': optimizer.state_dict(),
                'optimizer_d': optimizer_d.state_dict(),
                'lr_scheduler': lr_scheduler.state_dict(),
                'lr_scheduler_d': lr_scheduler_d.state_dict(),
                'epoch': epoch,
                'args': args
            }, logger.get_checkpoint_path(epoch))
        if mean_iou > best_iou:
            shutil.copy(logger.get_checkpoint_path(epoch),
                        logger.get_checkpoint_path('best'))
        best_iou = max(best_iou, mean_iou)
        print("Target: {} Best: {}".format(mean_iou, best_iou))

    logger.close()
Exemple #6
0
def train(model,
          state,
          path,
          annotations,
          val_path,
          val_annotations,
          resize,
          max_size,
          jitter,
          batch_size,
          iterations,
          val_iterations,
          mixed_precision,
          lr,
          warmup,
          milestones,
          gamma,
          is_master=True,
          world=1,
          use_dali=True,
          verbose=True,
          metrics_url=None,
          logdir=None,
          rotate_augment=False,
          augment_brightness=0.0,
          augment_contrast=0.0,
          augment_hue=0.0,
          augment_saturation=0.0,
          regularization_l2=0.0001,
          rotated_bbox=False,
          absolute_angle=False):
    'Train the model on the given dataset'

    # Prepare model
    nn_model = model
    stride = model.stride

    model = convert_fixedbn_model(model)
    if torch.cuda.is_available():
        model = model.cuda()

    # Setup optimizer and schedule
    optimizer = SGD(model.parameters(),
                    lr=lr,
                    weight_decay=regularization_l2,
                    momentum=0.9)

    loss_scale = "dynamic" if use_dali else "128.0"

    model, optimizer = amp.initialize(
        model,
        optimizer,
        opt_level='O2' if mixed_precision else 'O0',
        keep_batchnorm_fp32=True,
        loss_scale=loss_scale,
        verbosity=is_master)

    if world > 1:
        model = DistributedDataParallel(model)
    model.train()

    if 'optimizer' in state:
        optimizer.load_state_dict(state['optimizer'])

    def schedule(train_iter):
        if warmup and train_iter <= warmup:
            return 0.9 * train_iter / warmup + 0.1
        return gamma**len([m for m in milestones if m <= train_iter])

    scheduler = LambdaLR(optimizer, schedule)

    # Prepare dataset
    if verbose: print('Preparing dataset...')
    if rotated_bbox:
        if use_dali:
            raise NotImplementedError(
                "This repo does not currently support DALI for rotated bbox detections."
            )
        data_iterator = RotatedDataIterator(
            path,
            jitter,
            max_size,
            batch_size,
            stride,
            world,
            annotations,
            training=True,
            rotate_augment=rotate_augment,
            augment_brightness=augment_brightness,
            augment_contrast=augment_contrast,
            augment_hue=augment_hue,
            augment_saturation=augment_saturation,
            absolute_angle=absolute_angle)
    else:
        data_iterator = (DaliDataIterator if use_dali else DataIterator)(
            path,
            jitter,
            max_size,
            batch_size,
            stride,
            world,
            annotations,
            training=True,
            rotate_augment=rotate_augment,
            augment_brightness=augment_brightness,
            augment_contrast=augment_contrast,
            augment_hue=augment_hue,
            augment_saturation=augment_saturation)
    if verbose: print(data_iterator)

    if verbose:
        print('    device: {} {}'.format(
            world, 'cpu' if not torch.cuda.is_available() else
            'GPU' if world == 1 else 'GPUs'))
        print('     batch: {}, precision: {}'.format(
            batch_size, 'mixed' if mixed_precision else 'full'))
        print(' BBOX type:', 'rotated' if rotated_bbox else 'axis aligned')
        print('Training model for {} iterations...'.format(iterations))

    # Create TensorBoard writer
    if logdir is not None:
        from torch.utils.tensorboard import SummaryWriter
        if is_master and verbose:
            print('Writing TensorBoard logs to: {}'.format(logdir))
        writer = SummaryWriter(log_dir=logdir)

    profiler = Profiler(['train', 'fw', 'bw'])
    iteration = state.get('iteration', 0)
    while iteration < iterations:
        cls_losses, box_losses = [], []
        for i, (data, target) in enumerate(data_iterator):
            if iteration >= iterations:
                break

            # Forward pass
            profiler.start('fw')

            optimizer.zero_grad()
            cls_loss, box_loss = model([data, target])
            del data
            profiler.stop('fw')

            # Backward pass
            profiler.start('bw')
            with amp.scale_loss(cls_loss + box_loss, optimizer) as scaled_loss:
                scaled_loss.backward()
            optimizer.step()

            scheduler.step()

            # Reduce all losses
            cls_loss, box_loss = cls_loss.mean().clone(), box_loss.mean(
            ).clone()
            if world > 1:
                torch.distributed.all_reduce(cls_loss)
                torch.distributed.all_reduce(box_loss)
                cls_loss /= world
                box_loss /= world
            if is_master:
                cls_losses.append(cls_loss)
                box_losses.append(box_loss)

            if is_master and not isfinite(cls_loss + box_loss):
                raise RuntimeError('Loss is diverging!\n{}'.format(
                    'Try lowering the learning rate.'))

            del cls_loss, box_loss
            profiler.stop('bw')

            iteration += 1
            profiler.bump('train')
            if is_master and (profiler.totals['train'] > 60
                              or iteration == iterations):
                focal_loss = torch.stack(list(cls_losses)).mean().item()
                box_loss = torch.stack(list(box_losses)).mean().item()
                learning_rate = optimizer.param_groups[0]['lr']
                if verbose:
                    msg = '[{:{len}}/{}]'.format(iteration,
                                                 iterations,
                                                 len=len(str(iterations)))
                    msg += ' focal loss: {:.3f}'.format(focal_loss)
                    msg += ', box loss: {:.3f}'.format(box_loss)
                    msg += ', {:.3f}s/{}-batch'.format(profiler.means['train'],
                                                       batch_size)
                    msg += ' (fw: {:.3f}s, bw: {:.3f}s)'.format(
                        profiler.means['fw'], profiler.means['bw'])
                    msg += ', {:.1f} im/s'.format(batch_size /
                                                  profiler.means['train'])
                    msg += ', lr: {:.2g}'.format(learning_rate)
                    print(msg, flush=True)

                if logdir is not None:
                    writer.add_scalar('focal_loss', focal_loss, iteration)
                    writer.add_scalar('box_loss', box_loss, iteration)
                    writer.add_scalar('learning_rate', learning_rate,
                                      iteration)
                    del box_loss, focal_loss

                if metrics_url:
                    post_metrics(
                        metrics_url, {
                            'focal loss': mean(cls_losses),
                            'box loss': mean(box_losses),
                            'im_s': batch_size / profiler.means['train'],
                            'lr': learning_rate
                        })

                # Save model weights
                state.update({
                    'iteration': iteration,
                    'optimizer': optimizer.state_dict(),
                    'scheduler': scheduler.state_dict(),
                })
                with ignore_sigint():
                    nn_model.save(state)

                profiler.reset()
                del cls_losses[:], box_losses[:]

            if val_annotations and (iteration == iterations
                                    or iteration % val_iterations == 0):
                infer(model,
                      val_path,
                      None,
                      resize,
                      max_size,
                      batch_size,
                      annotations=val_annotations,
                      mixed_precision=mixed_precision,
                      is_master=is_master,
                      world=world,
                      use_dali=use_dali,
                      is_validation=True,
                      verbose=False,
                      rotated_bbox=rotated_bbox)
                model.train()

            if (iteration == iterations
                    and not rotated_bbox) or (iteration > iterations
                                              and rotated_bbox):
                break

    if logdir is not None:
        writer.close()
def train(model,
          state,
          path,
          annotations,
          val_path,
          val_annotations,
          resize,
          max_size,
          jitter,
          batch_size,
          iterations,
          val_iterations,
          mixed_precision,
          lr,
          warmup,
          milestones,
          gamma,
          is_master=True,
          world=1,
          use_dali=True,
          verbose=True,
          metrics_url=None,
          logdir=None):
    'Train the model on the given dataset'

    # Prepare dataset
    if verbose: print('Preparing dataset...')
    data_iterator = (DaliDataIterator if use_dali else DataIterator)(
        path,
        jitter,
        max_size,
        batch_size,
        model.stride,
        world,
        annotations,
        training=True)
    if verbose: print(data_iterator)

    # Prepare model
    nn_model = model
    model = convert_fixedbn_model(model)
    if torch.cuda.is_available():
        model = model.cuda()
    if mixed_precision:
        model = fp16_utils.BN_convert_float(model.half())
    if world > 1:
        model = DistributedDataParallel(model, delay_allreduce=True)
    model.train()

    # Setup optimizer and schedule
    optimizer = SGD(model.parameters(),
                    lr=lr,
                    weight_decay=0.0001,
                    momentum=0.9)
    if mixed_precision:
        optimizer = fp16_utils.FP16_Optimizer(optimizer,
                                              static_loss_scale=128.,
                                              verbose=False)
    if 'optimizer' in state:
        optimizer.load_state_dict(state['optimizer'])

    def schedule(train_iter):
        if warmup and train_iter <= warmup:
            return 0.9 * train_iter / warmup + 0.1
        return gamma**len([m for m in milestones if m <= train_iter])

    scheduler = LambdaLR(optimizer.optimizer if mixed_precision else optimizer,
                         schedule)

    if verbose:
        print('    device: {} {}'.format(
            world, 'cpu' if not torch.cuda.is_available() else
            'gpu' if world == 1 else 'gpus'))
        print('    batch: {}, precision: {}'.format(
            batch_size, 'mixed' if mixed_precision else 'full'))
        print('Training model for {} iterations...'.format(iterations))

    # Create TensorBoard writer
    if logdir is not None:
        from tensorboardX import SummaryWriter
        if is_master and verbose:
            print('Writing TensorBoard logs to: {}'.format(logdir))
        writer = SummaryWriter(log_dir=logdir)

    profiler = Profiler(['train', 'fw', 'bw'])
    iteration = state.get('iteration', 0)
    while iteration < iterations:
        cls_losses, box_losses = [], []
        for i, (data, target) in enumerate(data_iterator):
            scheduler.step(iteration)

            # Forward pass
            profiler.start('fw')
            if mixed_precision:
                data = data.half()
            optimizer.zero_grad()
            cls_loss, box_loss = model([data, target])
            del data
            profiler.stop('fw')

            # Backward pass
            profiler.start('bw')
            if mixed_precision: optimizer.backward(cls_loss + box_loss)
            else: (cls_loss + box_loss).backward()
            optimizer.step()

            # Reduce all losses
            cls_loss, box_loss = cls_loss.mean().clone(), box_loss.mean(
            ).clone()
            if world > 1:
                torch.distributed.all_reduce(cls_loss)
                torch.distributed.all_reduce(box_loss)
                cls_loss /= world
                box_loss /= world
            if is_master:
                cls_losses.append(cls_loss)
                box_losses.append(box_loss)

            if is_master and not isfinite(cls_loss + box_loss):
                raise RuntimeError('Loss is diverging!\n{}'.format(
                    'Try lowering the learning rate.'))

            del cls_loss, box_loss
            profiler.stop('bw')

            iteration += 1
            profiler.bump('train')
            if is_master and (profiler.totals['train'] > 60
                              or iteration == iterations):
                focal_loss = torch.stack(list(cls_losses)).mean().item()
                box_loss = torch.stack(list(box_losses)).mean().item()
                learning_rate = optimizer.param_groups[0]['lr']
                if verbose:
                    msg = '[{:{len}}/{}]'.format(iteration,
                                                 iterations,
                                                 len=len(str(iterations)))
                    msg += ' focal loss: {:.3f}'.format(focal_loss)
                    msg += ', box loss: {:.3f}'.format(box_loss)
                    msg += ', {:.3f}s/{}-batch'.format(profiler.means['train'],
                                                       batch_size)
                    msg += ' (fw: {:.3f}s, bw: {:.3f}s)'.format(
                        profiler.means['fw'], profiler.means['bw'])
                    msg += ', {:.1f} im/s'.format(batch_size /
                                                  profiler.means['train'])
                    msg += ', lr: {:.2g}'.format(learning_rate)
                    print(msg, flush=True)

                if logdir is not None:
                    writer.add_scalar('focal_loss', focal_loss, iteration)
                    writer.add_scalar('box_loss', box_loss, iteration)
                    writer.add_scalar('learning_rate', learning_rate,
                                      iteration)
                    del box_loss, focal_loss

                if metrics_url:
                    post_metrics(
                        metrics_url, {
                            'focal loss': mean(cls_losses),
                            'box loss': mean(box_losses),
                            'im_s': batch_size / profiler.means['train'],
                            'lr': learning_rate
                        })

                # Save model weights
                state.update({
                    'iteration': iteration,
                    'optimizer': optimizer.state_dict(),
                    'scheduler': scheduler.state_dict(),
                })
                with ignore_sigint():
                    nn_model.save(state)

                profiler.reset()
                del cls_losses[:], box_losses[:]

            if val_annotations and (iteration == iterations
                                    or iteration % val_iterations == 0):
                infer(nn_model,
                      val_path,
                      None,
                      resize,
                      max_size,
                      batch_size,
                      annotations=val_annotations,
                      mixed_precision=mixed_precision,
                      is_master=is_master,
                      world=world,
                      use_dali=use_dali,
                      verbose=False)
                model.train()

            if iteration == iterations:
                break

    if logdir is not None:
        writer.close()