Exemple #1
0
    def __init__(self, args):
        print("WGAN_GradientPenalty init model.")
        self.G = ResGenerator2D
        self.D = ResDiscriminator2D
        self.C = args.channels

        # Check if cuda is available
        self.check_cuda(args.cuda)

        # WGAN values from paper
        self.learning_rate = 1e-4
        self.b1 = 0.5
        self.b2 = 0.999
        self.batch_size = 64

        # WGAN_gradient penalty uses ADAM
        self.d_optimizer = optim.RMSProp(self.D.parameters(), lr=self.learning_rate, alpha=0.99)
        self.g_optimizer = optim.RMSProp(self.G.parameters(), lr=self.learning_rate, alpha=0.99)


        self.generator_iters = args.generator_iters
        self.critic_iter = 5
        self.lambda_term = 10

        self.start_GPU = args['start_GPU']
        self.device = torch.device(f"cuda:{self.start_GPU}" if (torch.cuda.is_available() and self.num_GPU > 0) else "cpu")
Exemple #2
0
def Optimizer(opt, gen, dis):
    if opt.gan_optim == 'Adam':
        g_optimizer = optim.Adam(gen.parameters(), lr=opt.g_learning_rate)
        d_optimizer = optim.Adam(dis.parameters(), lr=opt.d_learning_rate)

    elif opt.gan_optim == 'rmsprop':
        g_optimizer = optim.RMSProp(gen.parameters(), lr=opt.g_learning_rate)
        d_optimizer = optim.RMSProp(dis.parameters(), lr=opt.d_learning_rate)

    else:
        print("GAN OPTIMIZER IS NOT IMPLEMENTED")
        raise NotImplementedError

    return g_optimizer, d_optimizer
Exemple #3
0
    def __init__(self, observation_shape, num_actions, device='cuda:0',
                 gamma=0.99, learning_rate=0.001, weight_decay=0.0,
                 update_tar_interval=1000, clip_gradient=True, optim_name='Adam'):

        self.num_actions = num_actions
        self.gamma = gamma
        self.device = device

        self.clip_gradient = clip_gradient
        self.optim_name = optim_name
        self.weight_decay = weight_decay

        self.update_tar_interval = update_tar_interval

        self.model = VoxelDQN(observation_shape, num_actions).to(device)
        self.target_model = VoxelDQN(observation_shape, num_actions).to(device)
        self.target_model.load_state_dict(self.model.state_dict())

        if optim_name == "SGD":
            self.optimizer = optim.SGD(self.model.parameters(),
                                       lr=learning_rate,
                                       weight_decay=weight_decay)
        elif optim_name == "RMSProp":
            self.optimizer = optim.RMSProp(self.model.parameters(),
                                           lr=learning_rate,
                                           weight_decay=weight_decay)
        elif optim_name == "Adam":
            self.optimizer = optim.Adam(self.model.parameters(), lr=learning_rate)
Exemple #4
0
 def __init__(self, parametersList):
     lstmParams = [parametersList[0]]
     rest = [paramtersList[1:]]
     self.optimizers = [
         optim.SGD(rest, lr=LR, weight_decay=5e-4, momentum=MOMENTUM),
         optim.RMSProp(lstmParams, lr=LR, weight_decay=5e-4)
     ]
     self.param_groups = itertools.chain(self.optimizers[0].param_groups,
                                         self.optimizers[1].param_groups)
Exemple #5
0
def load_optim(optimizer, model, custom_optim=None, epochs=None):
    run_optim = ""
    optim_name = optimizer['name']
    lr = optimizer['lr']
    if 'lr_min' in optimizer.keys():
        lr_min = optimizer['lr_min']
    else:
        lr_min = lr*0.01  # Hardcoded for now but if we dont specify lets go from lr to 1/100th of lr

    if optim_name in supported_optims:
        if optim_name == "Adam":
            run_optim = optim.Adam(model.parameters(), lr=lr)
        elif optim_name == "SGD":
            run_optim = optim.SGD(model.parameters(), lr=lr)
        elif optim_name == "Adagrad":
            run_optim = optim.Adagrad(model.parameters(), lr=lr)
        elif optim_name == "RMSProp":
            run_optim = optim.RMSProp(model.parameters(), lr=lr)
        else:
            print("Unknown optim defaulting to...Adam")
            run_optim = optim.Adam(model.parameters(), lr=lr)
    else:
        run_optim = custom_optim
    # Now if we specified a scheduler use it
    if 'scheduler' in optimizer.keys() and 'scheduler_type' in optimizer.keys():
        use_scheduler = optimizer['scheduler']
        scheduler_type = optimizer['scheduler_type']
        if use_scheduler:
            if scheduler_type == "linear":
                step_size = (lr - lr_min) / epochs
                lr_lambda = lambda epoch: epoch - step_size
                lr_optim = CustomLRScheduler(run_optim, lr_lambda)
            elif scheduler_type == "multiplicative":
                if 'multiplier' in optimizer.keys():
                    multiplier = optimizer['multiplier']
                else:
                    multiplier = 0.95  # Default to this
                # torch.optim.lr_scheduler.MultiplicativeLR doesn't seem to be in torch 1.5.0 so make the same function
                lr_lambda = lambda epoch: epoch * multiplier
                lr_optim = CustomLRScheduler(run_optim, lr_lambda)
            else:
                if 'multiplier' in optimizer.keys():
                    multiplier = optimizer['multiplier']
                else:
                    multiplier = 0.95  # Default to this
                # torch.optim.lr_scheduler.MultiplicativeLR doesn't seem to be in torch 1.5.0 so make the same function
                lr_lambda = lambda epoch: epoch * multiplier
                lr_optim = CustomLRScheduler(run_optim, lr_lambda)
            return lr_optim
        else:
            print("Use scheduler is false")
    return run_optim
Exemple #6
0
    def __init__(self, params, args):
        super().__init__()
        optimizer_type = args.optimizer
        lr = args.learning_rate
        momentum = args.momentum
        weight_decay = args.weight_decay
        # eps = args.eps

        if optimizer_type == "RMSProp":
            self.m_optimizer = optim.RMSProp(params, lr=lr,  momentum=momentum)
        elif optimizer_type == "SGD":
            self.m_optimizer = optim.SGD(params, lr=lr, weight_decay=weight_decay)
        elif optimizer_type == "Adam":
            self.m_optimizer = optim.Adam(params, lr=lr, weight_decay=weight_decay)
        elif optimizer_type == "AdamW":
            self.m_optimizer = optim.AdamW(params, lr=lr, weight_decay=weight_decay)
        else:
            raise NotImplementedError
    def __init__(self, params, args):
        optimizer_type = args.optimizer_type
        lr = args.learning_rate
        momentum = args.momentum
        weight_decay = args.weight_decay
        eps = args.eps

        if optimizer_type == "RMSProp":
            self.m_optimizer = optim.RMSProp(params,
                                             lr=lr,
                                             eps=eps,
                                             weight_decay=weight_decay,
                                             momentum=momentum)

        elif optimizer_type == "Adam":
            self.m_optimizer = optim.Adam(params, lr=lr)

        else:
            raise NotImplementedError
Exemple #8
0
model.to(device)

# Freeze the embeddings for n_freeze epochs
if args.n_freeze > 0:
    if args.model in ['Context_CP', 'Context_CP_v2']:
        model.lhs.weight.requires_grad = False
        model.rel.weight.requires_grad = False
        model.rh.weight.requires_grad = False

    elif args.model in ['ContExt']:
        for i in range(2):
            model.embeddings[i].weight.requires_grad = False

optim_method = {
    'Adagrad': lambda: optim.Adagrad(model.parameters(), lr=args.learning_rate),
    'RMSprop': lambda: optim.RMSProp(model.parameters(), lr=args.learning_rate),
    'SGD': lambda: optim.SGD(model.parameters(), lr=args.learning_rate)
}[args.optimizer]()

# print('Model state:')
# for param_tensor in model.state_dict():
#     print(f'\t{param_tensor}\t{model.state_dict()[param_tensor].size()}')

optimizer = KBCOptimizer(model, regularizer, optim_method, args.batch_size, n_freeze=args.n_freeze)

def avg_both(mrrs: Dict[str, float], hits: Dict[str, torch.FloatTensor]):
    """
    aggregate metrics for missing lhs and rhs
    :param mrrs: d
    :param hits:
    :return:
Exemple #9
0
def optimizer_factory(config, params):
    """ A convenience function that initializes some of the common optimizers
        supported by PyTorch.
        
        Supports:
            - adadelta
            - adagrad
            - adam
            - adamax
            - rmsprop
            - sgd

        For more information on these optimizers, see the PyTorch documentation.

        Args:
            config: dict
                Contains the parameters needed to initialize the optimizer,
                such as the learning rate, weight decay, etc.
            params: iterable
                An iterable of parameters to optimize or dicts defining
                parameter groups.

        Returns:
            optim: optim.Optimizer
                An optimizer object
    """
    if config["type"] == "adadelta":
        return optim.Adadelta(params,
                              lr=config.get("lr", 1.0),
                              rho=config.get("rho", 0.9),
                              eps=config.get("eps", 1e-6),
                              weight_decay=config.get("weight_decay", 0))
    elif config["type"] == "adagrad":
        return optim.Adagrad(params,
                             lr=config.get("lr", 0.01),
                             lr_decay=config.get("lr_decay", 0),
                             weight_decay=config.get("weight_decay", 0),
                             initial_accumulator_value=config.get(
                                 "initial_accumulator_value", 0))
    elif config["type"] == "adam":
        return optim.Adam(params,
                          lr=config.get("lr", 0.001),
                          betas=config.get("betas", (0.9, 0.999)),
                          eps=config.get("eps", 1e-8),
                          weight_decay=config.get("weight_decay", 0),
                          amsgrad=config.get("amsgrad", False))
    elif config["type"] == "adamax":
        return optim.Adamax(params,
                            lr=config.get("lr", 0.002),
                            betas=config.get("betas", (0.9, 0.999)),
                            eps=config.get("eps", 1e-8),
                            weight_decay=config.get("weight_decay", 0))
    elif config["type"] == "rmsprop":
        return optim.RMSProp(params,
                             lr=config.get("lr", 0.01),
                             alpha=config.get("alpha", 0.99),
                             eps=config.get("eps", 1e-8),
                             weight_decay=config.get("weight_decay", 0),
                             momentum=config.get("momentum", 0),
                             centered=config.get("centered", False))
    elif config["type"] == "sgd":
        return optim.SGD(params,
                         lr=config.get("lr", 0.001),
                         momentum=config.get("momentum", 0),
                         dampening=config.get("dampening", 0),
                         weight_decay=config.get("weight_decay", 0),
                         nesterov=config.get("nesterov", False))
    else:
        raise ValueError("Unrecognized optimizer type.")
Exemple #10
0
    def __init__(self, ):
        super(SAE, self).__init__()
        self.fc1 = nn.Linear(nb_movies, 20)
        self.fc2 = nn.Linear(20, 10)
        self.fc3 = nn.Linear(10, 20)
        self.fc4 = nn.Linear(20, nb_movies)
        self.activation = nn.Sigmoid()
    def forward(self, x):
        x = self.activation(self.fc1(x))
        x = self.activation(self.fc2(x))
        x = self.activation(self.fc3(x))
        x = self.fc4(x)
        return x
sae = SAE()
criterion = nn.MSELoss()
optimizer = optim.RMSProp(sae.parameters(), lr = 0.01, weight_decay = 0.5)

# Training the SAE
nb_epoch = 200
for epoch in range(1, nb_epoch + 1):
    train_loss = 0
    s = 0.
    for id_user in range(nb_users):
        input = Variable(training_set[id_user]).unsqueeze(0)
        target = input.clone()
        if torch.sum(target.data > 0) > 0:
            output = sae(input)
            target.require_grad = False
            output[target == 0] = 0
            loss = criterion(output, target)
            mean_corrector = nb_movies/float(torch.sum(target.data > 0 + 1e-10))
Exemple #11
0
def train():
    if args.dataset == 'COCO':
        pass
#         if args.dataset_root == VOC_ROOT:
#             if not os.path.exists(COCO_ROOT):
#                 parser.error('Must specify dataset_root if specifying dataset')
#             print("WARNING: Using default COCO dataset_root because " +
#                   "--dataset_root was not specified.")
#             args.dataset_root = COCO_ROOT
#         cfg = coco
#         dataset = COCODetection(root=args.dataset_root,
#                                 transform=SSDAugmentation(cfg['min_dim'],
#                                                           MEANS))
    elif args.dataset == 'VOC':
        #         if args.dataset_root == COCO_ROOT:
        #             parser.error('Must specify dataset if specifying dataset_root')
        cfg = voc
        dataset = VOCDetection(root=args.dataset_root,
                               transform=SSDAugmentation(
                                   cfg['min_dim'], MEANS))

    elif args.dataset == 'STANFORD':
        #         if args.dataset_root == COCO_ROOT:
        #             parser.error('Must specify dataset if specifying dataset_root')
        cfg = stanford
        dataset = StanfordDetection(root=args.dataset_root,
                                    transform=SSDAugmentation(
                                        cfg['min_dim'], MEANS))

    ssd_net = build_ssd('train', cfg['min_dim'], cfg['num_classes'])
    net = ssd_net

    if args.cuda:
        net = torch.nn.DataParallel(ssd_net)
        cudnn.benchmark = True

    if args.resume:
        print('Resuming training, loading {}...'.format(args.resume))
        ssd_net.load_weights(args.resume)
    else:
        vgg_weights = torch.load(args.save_folder + args.basenet)
        print('Loading base network...')
        ssd_net.vgg.load_state_dict(vgg_weights)

    if args.cuda:
        net = net.cuda()

    if not args.resume:
        print('Initializing weights...')
        # initialize newly added layers' weights with xavier method
        ssd_net.extras.apply(weights_init)
        ssd_net.loc.apply(weights_init)
        ssd_net.conf.apply(weights_init)
    if args.optimizer == 'Adadelta':
        optimizer = optim.Adadelta(net.parameters(),
                                   lr=args.lr,
                                   momentum=args.momentum,
                                   weight_decay=args.weight_decay)
    elif args.optimizer == 'RMSProp':
        optimizer = optim.RMSProp(net.parameters(),
                                  lr=args.lr,
                                  weight_decay=args.weight_decay)
    elif args.optimizer == 'Adam':
        optimizer = optim.Adam(net.parameters(),
                               lr=args.lr,
                               weight_decay=args.weight_decay)
    else:
        optimizer = optim.SGD(net.parameters(),
                              lr=args.lr,
                              momentum=args.momentum,
                              weight_decay=args.weight_decay)

    criterion = MultiBoxLoss(cfg['num_classes'], 0.5, True, 0, True, 3, 0.5,
                             False, args.cuda)

    net.train()
    # loss counters
    loc_loss = 0
    conf_loss = 0
    epoch = 0
    print('Loading the dataset...')

    epoch_size = len(dataset) // args.batch_size
    print('Training SSD on:', dataset.name)
    print('Using the specified args:')
    print(args)

    step_index = 0

    if args.visdom:
        vis_title = 'SSD.PyTorch on ' + dataset.name
        vis_legend = ['Loc Loss', 'Conf Loss', 'Total Loss']
        iter_plot = create_vis_plot('Iteration', 'Loss', vis_title, vis_legend)
        epoch_plot = create_vis_plot('Epoch', 'Loss', vis_title, vis_legend)

    data_loader = data.DataLoader(dataset,
                                  args.batch_size,
                                  num_workers=args.num_workers,
                                  shuffle=True,
                                  collate_fn=detection_collate,
                                  pin_memory=True)

    # create batch iterator
    batch_iterator = iter(data_loader)
    for iteration in range(args.start_iter, cfg['max_iter']):
        if iteration != 0 and (iteration % epoch_size == 0):
            print('Saving state, epoch:', iteration / epoch_size)
            torch.save(
                ssd_net.state_dict(), 'weights/ssd300_STANFORD_epoch_' +
                repr(iteration / epoch_size) + '.pth')

            if args.visdom:
                update_vis_plot(epoch, loc_loss, conf_loss, epoch_plot, None,
                                'append', epoch_size)
            # reset epoch loss counters
            loc_loss = 0
            conf_loss = 0
            epoch += 1

        if iteration in cfg['lr_steps']:
            step_index += 1
            adjust_learning_rate(optimizer, args.gamma, step_index)

        try:
            # load train data
            images, targets = next(batch_iterator)
        except StopIteration:
            batch_iterator = iter(data_loader)
            images, targets = next(batch_iterator)

        if args.cuda:
            images = Variable(images.cuda())
            targets = [Variable(ann.cuda(), volatile=True) for ann in targets]
        else:
            images = Variable(images)
            targets = [Variable(ann, volatile=True) for ann in targets]

        # forward
        t0 = time.time()
        out = net(images)
        # backprop
        optimizer.zero_grad()
        loss_l, loss_c = criterion(out, targets)
        loss = loss_l + loss_c
        loss.backward()
        optimizer.step()
        t1 = time.time()
        loc_loss += loss_l.item()
        conf_loss += loss_c.item()

        if iteration % 10 == 0:
            print('timer: %.4f sec.' % (t1 - t0))
            print('iter ' + repr(iteration) + ' || Loss: %.4f ||' %
                  (loss.item()),
                  end=' ')

        if args.visdom:
            update_vis_plot(iteration, loss_l.data[0], loss_c.data[0],
                            iter_plot, epoch_plot, 'append')


#         if iteration != 0 and iteration % 5000 == 0:
#             print('Saving state, iter:', iteration)
#             torch.save(ssd_net.state_dict(), 'weights/ssd300_COCO_' +
#                        repr(iteration) + '.pth')
    torch.save(ssd_net.state_dict(),
               args.save_folder + '' + args.dataset + '.pth')