Exemple #1
0
def convert_to_backward_compatible_models(paths):
    """Convert to backward compatible pth files.

    PyTorch 1.6 uses a updated version of torch.save. In order to be compatible
    with previous PyTorch version, save it with
    _use_new_zipfile_serialization=False.
    """
    print('# Convert to backward compatible pth files ...')
    for idx, path in enumerate(paths):
        print(f'{idx+1:03d}: Processing {path}')
        flag_need_conversion = False
        with _open_file_like(path, 'rb') as opened_file:
            if _is_zipfile(opened_file):
                flag_need_conversion = True

        if flag_need_conversion:
            net = torch.load(path, map_location=torch.device('cpu'))
            print('\tConverting to compatible pth file...')
            torch.save(net, path, _use_new_zipfile_serialization=False)
def custom_load(f,
                map_location=None,
                pickle_module=pickle,
                **pickle_load_args):
    """Loads an object saved with :func:`torch.save` from a file.
    :func:`torch.load` uses Python's unpickling facilities but treats storages,
    which underlie tensors, specially. They are first deserialized on the
    CPU and are then moved to the device they were saved from. If this fails
    (e.g. because the run time system doesn't have certain devices), an exception
    is raised. However, storages can be dynamically remapped to an alternative
    set of devices using the :attr:`map_location` argument.
    If :attr:`map_location` is a callable, it will be called once for each serialized
    storage with two arguments: storage and location. The storage argument
    will be the initial deserialization of the storage, residing on the CPU.
    Each serialized storage has a location tag associated with it which
    identifies the device it was saved from, and this tag is the second
    argument passed to :attr:`map_location`. The builtin location tags are ``'cpu'``
    for CPU tensors and ``'cuda:device_id'`` (e.g. ``'cuda:2'``) for CUDA tensors.
    :attr:`map_location` should return either ``None`` or a storage. If
    :attr:`map_location` returns a storage, it will be used as the final deserialized
    object, already moved to the right device. Otherwise, :func:`torch.load` will
    fall back to the default behavior, as if :attr:`map_location` wasn't specified.
    If :attr:`map_location` is a :class:`torch.device` object or a string containing
    a device tag, it indicates the location where all tensors should be loaded.
    Otherwise, if :attr:`map_location` is a dict, it will be used to remap location tags
    appearing in the file (keys), to ones that specify where to put the
    storages (values).
    User extensions can register their own location tags and tagging and
    deserialization methods using :func:`torch.serialization.register_package`.
    Args:
        f: a file-like object (has to implement :meth:`read`, :meth:`readline`, :meth:`tell`, and :meth:`seek`),
            or a string or os.PathLike object containing a file name
        map_location: a function, :class:`torch.device`, string or a dict specifying how to remap storage
            locations
        pickle_module: module used for unpickling metadata and objects (has to
            match the :attr:`pickle_module` used to serialize file)
        pickle_load_args: (Python 3 only) optional keyword arguments passed over to
            :func:`pickle_module.load` and :func:`pickle_module.Unpickler`, e.g.,
            :attr:`errors=...`.
    .. warning::
        :func:`torch.load()` uses ``pickle`` module implicitly, which is known to be insecure.
        It is possible to construct malicious pickle data which will execute arbitrary code
        during unpickling. Never load data that could have come from an untrusted
        source, or that could have been tampered with. **Only load data you trust**.
    .. note::
        When you call :func:`torch.load()` on a file which contains GPU tensors, those tensors
        will be loaded to GPU by default. You can call ``torch.load(.., map_location='cpu')``
        and then :meth:`load_state_dict` to avoid GPU RAM surge when loading a model checkpoint.
    .. note::
        By default, we decode byte strings as ``utf-8``.  This is to avoid a common error
        case ``UnicodeDecodeError: 'ascii' codec can't decode byte 0x...``
        when loading files saved by Python 2 in Python 3.  If this default
        is incorrect, you may use an extra :attr:`encoding` keyword argument to specify how
        these objects should be loaded, e.g., :attr:`encoding='latin1'` decodes them
        to strings using ``latin1`` encoding, and :attr:`encoding='bytes'` keeps them
        as byte arrays which can be decoded later with ``byte_array.decode(...)``.
    Example:
        >>> torch.load('tensors.pt')
        # Load all tensors onto the CPU
        >>> torch.load('tensors.pt', map_location=torch.device('cpu'))
        # Load all tensors onto the CPU, using a function
        >>> torch.load('tensors.pt', map_location=lambda storage, loc: storage)
        # Load all tensors onto GPU 1
        >>> torch.load('tensors.pt', map_location=lambda storage, loc: storage.cuda(1))
        # Map tensors from GPU 1 to GPU 0
        >>> torch.load('tensors.pt', map_location={'cuda:1':'cuda:0'})
        # Load tensor from io.BytesIO object
        >>> with open('tensor.pt', 'rb') as f:
        ...     buffer = io.BytesIO(f.read())
        >>> torch.load(buffer)
        # Load a module with 'ascii' encoding for unpickling
        >>> torch.load('module.pt', encoding='ascii')
    """
    _check_dill_version(pickle_module)

    if 'encoding' not in pickle_load_args.keys():
        pickle_load_args['encoding'] = 'utf-8'

    with _open_file_like(f, 'rb') as opened_file:
        if _is_zipfile(opened_file):
            # The zipfile reader is going to advance the current file position.
            # If we want to actually tail call to torch.jit.load, we need to
            # reset back to the original position.
            orig_position = opened_file.tell()
            with _open_zipfile_reader(opened_file) as opened_zipfile:
                if _is_torchscript_zip(opened_zipfile):
                    warnings.warn(
                        "'torch.load' received a zip file that looks like a TorchScript archive"
                        " dispatching to 'torch.jit.load' (call 'torch.jit.load' directly to"
                        " silence this warning)", UserWarning)
                    opened_file.seek(orig_position)
                    return torch.jit.load(opened_file)
                return _load(opened_zipfile, map_location, pickle_module,
                             **pickle_load_args)
        return _legacy_load(opened_file, map_location, pickle_module,
                            **pickle_load_args)
def _legacy_load(f, map_location, pickle_module, **pickle_load_args):
    deserialized_objects: Dict[int, Any] = {}

    restore_location = _get_restore_location(map_location)

    def _check_container_source(container_type, source_file, original_source):
        try:
            current_source = ''.join(
                get_source_lines_and_file(container_type)[0])
        except Exception:  # saving the source is optional, so we can ignore any errors
            warnings.warn("Couldn't retrieve source code for container of "
                          "type " + container_type.__name__ +
                          ". It won't be checked "
                          "for correctness upon loading.")
            return
        if original_source != current_source:
            if container_type.dump_patches:
                file_name = container_type.__name__ + '.patch'
                diff = difflib.unified_diff(current_source.split('\n'),
                                            original_source.split('\n'),
                                            source_file,
                                            source_file,
                                            lineterm="")
                lines = '\n'.join(diff)
                try:
                    with open(file_name, 'a+') as f:
                        file_size = f.seek(0, 2)
                        f.seek(0)
                        if file_size == 0:
                            f.write(lines)
                        elif file_size != len(lines) or f.read() != lines:
                            raise IOError
                    msg = ("Saved a reverse patch to " + file_name + ". "
                           "Run `patch -p0 < " + file_name +
                           "` to revert your "
                           "changes.")
                except IOError:
                    msg = ("Tried to save a patch, but couldn't create a "
                           "writable file " + file_name + ". Make sure it "
                           "doesn't exist and your working directory is "
                           "writable.")
            else:
                msg = ("you can retrieve the original source code by "
                       "accessing the object's source attribute or set "
                       "`torch.nn.Module.dump_patches = True` and use the "
                       "patch tool to revert the changes.")
            msg = f"source code of class '{torch.typename(container_type)}' has changed. {msg}"
            warnings.warn(msg, SourceChangeWarning)

    def legacy_load(f, obj=None):
        deserialized_objects: Dict[int, Any] = {}

        def persistent_load(saved_id):
            if isinstance(saved_id, tuple):
                # Ignore containers that don't have any sources saved
                if all(saved_id[1:]):
                    _check_container_source(*saved_id)
                return saved_id[0]
            return deserialized_objects[int(saved_id)]

        with closing(tarfile.open(fileobj=f, mode='r:', format=tarfile.PAX_FORMAT)) as tar, \
                mkdtemp() as tmpdir:

            tar.extract('storages', path=tmpdir)
            with open(os.path.join(tmpdir, 'storages'), 'rb', 0) as f:
                num_storages = pickle_module.load(f, **pickle_load_args)
                for i in range(num_storages):
                    args = pickle_module.load(f, **pickle_load_args)
                    key, location, storage_type = args
                    obj = storage_type._new_with_file(f)
                    obj = restore_location(obj, location)
                    deserialized_objects[key] = obj

                storage_views = pickle_module.load(f, **pickle_load_args)
                for target_cdata, root_cdata, offset, size in storage_views:
                    root = deserialized_objects[root_cdata]
                    deserialized_objects[target_cdata] = root[offset:offset +
                                                              size]

            tar.extract('tensors', path=tmpdir)
            with open(os.path.join(tmpdir, 'tensors'), 'rb', 0) as f:
                num_tensors = pickle_module.load(f, **pickle_load_args)
                for _ in range(num_tensors):
                    args = pickle_module.load(f, **pickle_load_args)
                    key, storage_id, original_tensor_type = args
                    storage = deserialized_objects[storage_id]
                    tensor_type = storage_to_tensor_type(storage)
                    ndim, = struct.unpack('<i', f.read(4))
                    # skip next 4 bytes; legacy encoding treated ndim as 8 bytes
                    f.read(4)
                    size = struct.unpack(f'<{ndim}q', f.read(8 * ndim))
                    stride = struct.unpack(f'<{ndim}q', f.read(8 * ndim))
                    storage_offset, = struct.unpack('<q', f.read(8))
                    tensor = tensor_type().set_(storage, storage_offset, size,
                                                stride)
                    deserialized_objects[key] = tensor

            pickle_file = tar.extractfile('pickle')
            unpickler = pickle_module.Unpickler(pickle_file,
                                                **pickle_load_args)
            unpickler.persistent_load = persistent_load
            result = unpickler.load()
            return result

    deserialized_objects = {}

    def persistent_load(saved_id):
        assert isinstance(saved_id, tuple)
        typename = _maybe_decode_ascii(saved_id[0])
        data = saved_id[1:]

        if typename == 'module':
            # Ignore containers that don't have any sources saved
            if all(data[1:]):
                _check_container_source(*data)
            return data[0]
        elif typename == 'storage':
            data_type, root_key, location, size, view_metadata = data
            location = _maybe_decode_ascii(location)
            if root_key not in deserialized_objects:
                obj = data_type(size)
                obj._torch_load_uninitialized = True
                s = str(root_key) + '.bint'
                if not os.path.isfile(s):
                    with open(s, 'wb') as ff:
                        obj._write_file(ff, True, False)
                obj = obj.__class__.from_file(s, shared=1, size=size)
                deserialized_objects[root_key] = restore_location(
                    obj, location)
            storage = deserialized_objects[root_key]
            if view_metadata is not None:
                view_key, offset, view_size = view_metadata
                if view_key not in deserialized_objects:
                    deserialized_objects[view_key] = storage[offset:offset +
                                                             view_size]
                return deserialized_objects[view_key]
            else:
                return storage
        else:
            raise RuntimeError("Unknown saved id type: %s" % saved_id[0])

    _check_seekable(f)
    f_should_read_directly = _should_read_directly(f)

    if f_should_read_directly and f.tell() == 0:
        # legacy_load requires that f has fileno()
        # only if offset is zero we can attempt the legacy tar file loader
        try:
            return legacy_load(f)
        except tarfile.TarError:
            if _is_zipfile(f):
                # .zip is used for torch.jit.save and will throw an un-pickling error here
                raise RuntimeError(
                    f"{f.name} is a zip archive (did you mean to use torch.jit.load()?)"
                ) from None
            # if not a tarfile, reset file offset and proceed
            f.seek(0)

    if not hasattr(f,
                   'readinto') and (3, 8, 0) <= sys.version_info < (3, 8, 2):
        raise RuntimeError(
            "torch.load does not work with file-like objects that do not implement readinto on Python 3.8.0 and 3.8.1. "
            f"Received object of type \"{type(f)}\". Please update to Python 3.8.2 or newer to restore this "
            "functionality.")

    magic_number = pickle_module.load(f, **pickle_load_args)
    if magic_number != MAGIC_NUMBER:
        raise RuntimeError("Invalid magic number; corrupt file?")
    protocol_version = pickle_module.load(f, **pickle_load_args)
    if protocol_version != PROTOCOL_VERSION:
        raise RuntimeError("Invalid protocol version: %s" % protocol_version)

    _sys_info = pickle_module.load(f, **pickle_load_args)
    unpickler = pickle_module.Unpickler(f, **pickle_load_args)
    unpickler.persistent_load = persistent_load
    result = unpickler.load()
    deserialized_storage_keys = pickle_module.load(f, **pickle_load_args)

    offset = f.tell() if f_should_read_directly else None

    for key in tqdm(deserialized_storage_keys):
        assert key in deserialized_objects
        deserialized_objects[key]._set_from_file(f, offset,
                                                 f_should_read_directly)
        if offset is not None:
            offset = f.tell()
    torch._utils._validate_loaded_sparse_tensors()
    return result
Exemple #4
0
def _safe_legacy_load(f):
    MAGIC_NUMBER = 0x1950A86A20F9469CFC6C
    PROTOCOL_VERSION = 1001
    deserialized_objects = {}

    restore_location = _get_restore_location(None)

    def _check_container_source(container_type, source_file, original_source):
        try:
            current_source = "".join(
                get_source_lines_and_file(container_type)[0])
        except Exception:  # saving the source is optional, so we can ignore any errors
            warnings.warn("Couldn't retrieve source code for container of "
                          "type " + container_type.__name__ +
                          ". It won't be checked "
                          "for correctness upon loading.")
            return
        if original_source != current_source:
            if container_type.dump_patches:
                file_name = container_type.__name__ + ".patch"
                diff = difflib.unified_diff(
                    current_source.split("\n"),
                    original_source.split("\n"),
                    source_file,
                    source_file,
                    lineterm="",
                )
                lines = "\n".join(diff)
                try:
                    with open(file_name, "a+") as f:
                        file_size = f.seek(0, 2)
                        f.seek(0)
                        if file_size == 0:
                            f.write(lines)
                        elif file_size != len(lines) or f.read() != lines:
                            raise IOError
                    msg = ("Saved a reverse patch to " + file_name + ". "
                           "Run `patch -p0 < " + file_name +
                           "` to revert your "
                           "changes.")
                except IOError:
                    msg = ("Tried to save a patch, but couldn't create a "
                           "writable file " + file_name + ". Make sure it "
                           "doesn't exist and your working directory is "
                           "writable.")
            else:
                msg = ("you can retrieve the original source code by "
                       "accessing the object's source attribute or set "
                       "`torch.nn.Module.dump_patches = True` and use the "
                       "patch tool to revert the changes.")
            msg = "source code of class '{container_type}' has changed. {msg}".format(
                container_type=torch.typename(container_type), msg=msg)
            warnings.warn(msg, SourceChangeWarning)

    def legacy_load(f):
        deserialized_objects = {}

        def persistent_load(saved_id):
            if isinstance(saved_id, tuple):
                # Ignore containers that don't have any sources saved
                if all(saved_id[1:]):
                    _check_container_source(*saved_id)
                return saved_id[0]
            return deserialized_objects[int(saved_id)]

        with closing(
                tarfile.open(
                    fileobj=f, mode="r:",
                    format=tarfile.PAX_FORMAT)) as tar, mkdtemp() as tmpdir:

            tar.extract("storages", path=tmpdir)
            with open(os.path.join(tmpdir, "storages"), "rb", 0) as f:
                num_storages = RestrictedUnpickler(f).load()
                for _ in range(num_storages):
                    args = RestrictedUnpickler(f).load()
                    key, location, storage_type = args
                    obj = storage_type._new_with_file(f)
                    obj = restore_location(obj, location)
                    deserialized_objects[key] = obj

                storage_views = RestrictedUnpickler(f).load()
                for target_cdata, root_cdata, offset, size in storage_views:
                    root = deserialized_objects[root_cdata]
                    deserialized_objects[target_cdata] = root[offset:offset +
                                                              size]

            tar.extract("tensors", path=tmpdir)
            with open(os.path.join(tmpdir, "tensors"), "rb", 0) as f:
                num_tensors = RestrictedUnpickler(f).load()
                for _ in range(num_tensors):
                    args = RestrictedUnpickler(f).load()
                    key, storage_id, original_tensor_type = args
                    storage = deserialized_objects[storage_id]
                    tensor_type = storage_to_tensor_type(storage)
                    (ndim, ) = struct.unpack("<i", f.read(4))
                    # skip next 4 bytes; legacy encoding treated ndim as 8 bytes
                    f.read(4)
                    size = struct.unpack("<{}q".format(ndim), f.read(8 * ndim))
                    stride = struct.unpack("<{}q".format(ndim),
                                           f.read(8 * ndim))
                    (storage_offset, ) = struct.unpack("<q", f.read(8))
                    tensor = tensor_type().set_(storage, storage_offset, size,
                                                stride)
                    deserialized_objects[key] = tensor

            pickle_file = tar.extractfile("pickle")
            unpickler = RestrictedUnpickler(pickle_file)
            unpickler.persistent_load = persistent_load
            result = unpickler.load()
            return result

    deserialized_objects = {}

    def persistent_load(saved_id):
        assert isinstance(saved_id, tuple)
        typename = _maybe_decode_ascii(saved_id[0])
        data = saved_id[1:]

        if typename == "module":
            # Ignore containers that don't have any sources saved
            if all(data[1:]):
                _check_container_source(*data)
            return data[0]
        elif typename == "storage":
            data_type, root_key, location, size, view_metadata = data
            location = _maybe_decode_ascii(location)
            if root_key not in deserialized_objects:
                obj = data_type(size)
                obj._torch_load_uninitialized = True
                deserialized_objects[root_key] = restore_location(
                    obj, location)
            storage = deserialized_objects[root_key]
            if view_metadata is not None:
                view_key, offset, view_size = view_metadata
                if view_key not in deserialized_objects:
                    deserialized_objects[view_key] = storage[offset:offset +
                                                             view_size]
                return deserialized_objects[view_key]
            else:
                return storage
        else:
            raise RuntimeError("Unknown saved id type: %s" % saved_id[0])

    _check_seekable(f)
    f_should_read_directly = _should_read_directly(f)

    if f_should_read_directly and f.tell() == 0:
        # legacy_load requires that f has fileno()
        # only if offset is zero we can attempt the legacy tar file loader
        try:
            return legacy_load(f)
        except tarfile.TarError:
            if _is_zipfile(f):
                # .zip is used for torch.jit.save and will throw an un-pickling error
                raise RuntimeError(
                    f"{f.name} is a zip archive (did you mean to use torch.jit.load()?)"
                )
            # if not a tarfile, reset file offset and proceed
            f.seek(0)

    if not hasattr(f,
                   "readinto") and (3, 8, 0) <= sys.version_info < (3, 8, 2):
        raise RuntimeError(
            "torch.load does not work with file-like objects that do not implement"
            "readinto on Python 3.8.0 and 3.8.1. Received object of type"
            '"{}". Please update to Python 3.8.2 or newer to restore this'
            "functionality.".format(type(f)))

    magic_number = RestrictedUnpickler(f).load()
    if magic_number != MAGIC_NUMBER:
        raise RuntimeError("Invalid magic number; corrupt file?")
    protocol_version = RestrictedUnpickler(f).load()
    if protocol_version != PROTOCOL_VERSION:
        raise RuntimeError("Invalid protocol version: %s" % protocol_version)

    _ = RestrictedUnpickler(f).load()  # _sys_info
    unpickler = RestrictedUnpickler(f)
    unpickler.persistent_load = persistent_load
    result = unpickler.load()

    deserialized_storage_keys = RestrictedUnpickler(f).load()

    offset = f.tell() if f_should_read_directly else None
    for key in deserialized_storage_keys:
        assert key in deserialized_objects
        deserialized_objects[key]._set_from_file(f, offset,
                                                 f_should_read_directly)
        if offset is not None:
            offset = f.tell()

    return result