Exemple #1
0
 def test_isin_different_dtypes(self, device):
     supported_types = all_types() if device == 'cpu' else all_types_and(torch.half)
     for mult in [1, 10]:
         for assume_unique in [False, True]:
             for dtype1, dtype2 in product(supported_types, supported_types):
                 a = torch.tensor([1, 2, 3], device=device, dtype=dtype1)
                 b = torch.tensor([3, 4, 5] * mult, device=device, dtype=dtype2)
                 ec = torch.tensor([False, False, True], device=device)
                 c = torch.isin(a, b, assume_unique=assume_unique)
                 self.assertEqual(c, ec)
Exemple #2
0
class TestSortAndSelect(TestCase):

    def assertIsOrdered(self, order, x, mxx, ixx, task):
        SIZE = x.size(1)
        if order == 'descending':
            def check_order(a, b):
                # `a != a` because we put NaNs
                # at the end of ascending sorted lists,
                # and the beginning of descending ones.
                return ((a != a) | (a >= b)).all().item()
        elif order == 'ascending':
            def check_order(a, b):
                # see above
                return ((b != b) | (a <= b)).all().item()
        else:
            error('unknown order "{}", must be "ascending" or "descending"'.format(order))

        are_ordered = True
        for k in range(1, SIZE):
            self.assertTrue(check_order(mxx[:, k - 1], mxx[:, k]),
                            'torch.sort ({}) values unordered for {}'.format(order, task))

        seen = set()
        indicesCorrect = True
        size0 = x.size(0)
        size = x.size(x.dim() - 1)
        x = x.tolist()
        mxx = mxx.tolist()
        ixx = ixx.tolist()
        for k in range(size0):
            seen.clear()
            for j in range(size):
                self.assertEqual(x[k][ixx[k][j]], mxx[k][j],
                                 msg='torch.sort ({}) indices wrong for {}'.format(order, task))
                seen.add(ixx[k][j])
            self.assertEqual(len(seen), size)

    def test_sort(self, device):
        # on CUDA 2048 vs >2048 have different code path for the dim being sorted
        for SIZE in (4, 2049):
            x = torch.rand(4, SIZE, device=device)
            res1val, res1ind = torch.sort(x)

            # Test inplace
            y = x.clone()
            y_inds = torch.tensor((), dtype=torch.int64, device=device)
            torch.sort(y, out=(y, y_inds))
            x_vals, x_inds = torch.sort(x)
            self.assertEqual(x_vals, y)
            self.assertEqual(x_inds, y_inds)

            # Test use of result tensor
            res2val = torch.tensor((), device=device)
            res2ind = torch.tensor((), device=device, dtype=torch.long)
            torch.sort(x, out=(res2val, res2ind))
            self.assertEqual(res1val, res2val, atol=0, rtol=0)
            self.assertEqual(res1ind, res2ind, atol=0, rtol=0)
            self.assertEqual(torch.argsort(x), res1ind)
            self.assertEqual(x.argsort(), res1ind)

            # Test sorting of random numbers
            self.assertIsOrdered('ascending', x, res2val, res2ind, 'random')

            # Test simple sort
            self.assertEqual(
                torch.sort(torch.tensor((50, 40, 30, 20, 10), device=device))[0],
                torch.tensor((10, 20, 30, 40, 50), device=device),
                atol=0, rtol=0
            )

            # Test that we still have proper sorting with duplicate keys
            x = torch.floor(torch.rand(4, SIZE, device=device) * 10)
            torch.sort(x, out=(res2val, res2ind))
            self.assertIsOrdered('ascending', x, res2val, res2ind, 'random with duplicate keys')

            # DESCENDING SORT
            x = torch.rand(4, SIZE, device=device)
            res1val, res1ind = torch.sort(x, x.dim() - 1, True)

            # Test use of result tensor
            res2val = torch.tensor((), device=device)
            res2ind = torch.tensor((), device=device, dtype=torch.long)
            torch.sort(x, x.dim() - 1, True, out=(res2val, res2ind))
            self.assertEqual(res1val, res2val, atol=0, rtol=0)
            self.assertEqual(res1ind, res2ind, atol=0, rtol=0)
            self.assertEqual(torch.argsort(x, x.dim() - 1, True), res1ind)
            self.assertEqual(x.argsort(x.dim() - 1, True), res1ind)

            # Test sorting of random numbers
            self.assertIsOrdered('descending', x, res2val, res2ind, 'random')

            # Test simple sort task
            self.assertEqual(
                torch.sort(torch.tensor((10, 20, 30, 40, 50), device=device), 0, True)[0],
                torch.tensor((50, 40, 30, 20, 10), device=device),
                atol=0, rtol=0
            )

            # Test that we still have proper sorting with duplicate keys
            self.assertIsOrdered('descending', x, res2val, res2ind, 'random with duplicate keys')

            # Test sorting with NaNs
            x = torch.rand(4, SIZE, device=device)
            x[1][2] = float('NaN')
            x[3][0] = float('NaN')
            torch.sort(x, out=(res2val, res2ind))
            self.assertIsOrdered('ascending', x, res2val, res2ind,
                                 'random with NaNs')
            torch.sort(x, out=(res2val, res2ind), descending=True)
            self.assertIsOrdered('descending', x, res2val, res2ind,
                                 'random with NaNs')

    # FIXME: remove torch.bool from unsupported types once support is added for cub sort
    @dtypes(*set(get_all_dtypes()) - {torch.bool, torch.complex64, torch.complex128})
    def test_stable_sort(self, device, dtype):
        if TEST_WITH_ROCM and dtype == torch.bfloat16:
            return
        sizes = (100, 1000, 10000)
        for ncopies in sizes:
            x = torch.tensor([0, 1] * ncopies, dtype=dtype, device=device)
            _, idx = x.sort(stable=True)
            self.assertEqual(
                idx[:ncopies],
                torch.arange(start=0, end=2 * ncopies, step=2, device=device)
            )
            self.assertEqual(
                idx[ncopies:],
                torch.arange(start=1, end=2 * ncopies, step=2, device=device)
            )

    @onlyCUDA
    @dtypes(torch.uint8)
    @largeTensorTest('200GB')  # Unfortunately 80GB A100 is not large enough
    def test_sort_large(self, device, dtype):
        t0 = torch.randperm(8192, device=device).to(dtype)
        t = t0.view(1, 8192).expand(2 ** 18 + 1, -1).contiguous()
        v, i = t.sort()
        del t
        iv, im = i.var_mean(dim=0)
        del i
        vv, vm = v.var_mean(dim=0)
        del v
        self.assertEqual(vv, torch.zeros_like(vv))
        self.assertEqual(iv, torch.zeros_like(iv))
        self.assertEqual(vm, torch.arange(255, dtype=dtype, device=device))
        self.assertEqual(im, t0.sort().indices)

    def _test_sort_discontiguous(self, device, dtype):
        # on CUDA 2048 vs >2048 have different code path for the dim being sorted
        sizes = (5, 7, 2049)
        for shape in permutations(sizes):
            for perm in permutations((0, 1, 2)):
                for dim in range(3):
                    t = torch.randn(shape, device=device, dtype=dtype).permute(perm)
                    r1 = t.sort(dim=dim)
                    r2 = t.contiguous().sort(dim=dim)
                    self.assertEqual(r1, r2)
                    n = t.size(dim)

                    # assert ordered
                    self.assertTrue((r1.values.narrow(dim, 1, n - 1) >= r1.values.narrow(dim, 0, n - 1)).all())

                    # assert that different segments does not mix, which can easily happen
                    # if the stride is not handled correctly
                    self.assertTrue((t.unsqueeze(-1).transpose(dim, -1) == r1.values.unsqueeze(-1)).any(dim=dim).any(dim=-1).all())

                    # assert stride is preserved
                    if self.device_type == 'cuda':
                        # FIXME: this behavior should be true for all cases, not
                        # just the one specified in if condition
                        self.assertEqual(r1.values.stride(), t.stride())
                        self.assertEqual(r1.indices.stride(), t.stride())

    @onlyCUDA
    @dtypes(torch.float32)
    def test_sort_discontiguous(self, device, dtype):
        self._test_sort_discontiguous(device, dtype)

    @slowTest  # this test is slow on CPU, but not on CUDA
    @onlyCPU
    @dtypes(torch.float32)
    def test_sort_discontiguous_slow(self, device, dtype):
        self._test_sort_discontiguous(device, dtype)

    @dtypes(torch.float32)
    def test_sort_1d_output_discontiguous(self, device, dtype):
        tensor = torch.randn(12, device=device, dtype=dtype)[:6]
        values = torch.empty_like(tensor)[::2]
        indices = torch.empty(18, device=device, dtype=torch.long)[::3]
        torch.sort(tensor, out=(values, indices))
        values_cont, indices_cont = tensor.sort()
        self.assertEqual(indices, indices_cont)
        self.assertEqual(values, values_cont)

    @dtypes(torch.float32)
    def test_topk_1d_output_discontiguous(self, device, dtype):
        tensor = torch.randn(12, device=device, dtype=dtype)
        values = torch.empty_like(tensor)[::2]
        indices = torch.empty(18, device=device, dtype=torch.long)[::3]
        for sorted in (True, False):
            # outputs of `sorted=False` test are not guaranteed to be the same,
            # but with current implementation they are
            torch.topk(tensor, 6, sorted=sorted, out=(values, indices))
            values_cont, indices_cont = tensor.topk(6, sorted=sorted)
            self.assertEqual(indices, indices_cont)
            self.assertEqual(values, values_cont)

    # FIXME: remove torch.bool from unsupported types once support is added for cub sort
    @dtypes(*set(get_all_dtypes()) - {torch.bool, torch.complex64, torch.complex128})
    def test_stable_sort_against_numpy(self, device, dtype):
        if TEST_WITH_ROCM and dtype == torch.bfloat16:
            return
        if dtype in floating_types_and(torch.float16, torch.bfloat16):
            inf = float('inf')
            neg_inf = -float('inf')
            nan = float('nan')
        else:
            if dtype != torch.bool:
                # no torch.iinfo support for torch.bool
                inf = torch.iinfo(dtype).max
                neg_inf = torch.iinfo(dtype).min
            else:
                inf = True
                neg_inf = ~inf
            # no nan for integral types, we use inf instead for simplicity
            nan = inf

        def generate_samples():
            from itertools import chain, combinations

            for sizes in [(1025,), (10000,)]:
                size = sizes[0]
                # binary strings
                yield (torch.tensor([0, 1] * size, dtype=dtype, device=device), 0)

            if self.device_type == 'cuda':
                return

            yield (torch.tensor([0, 1] * 100, dtype=dtype, device=device), 0)

            def repeated_index_fill(t, dim, idxs, vals):
                res = t
                for idx, val in zip(idxs, vals):
                    res = res.index_fill(dim, idx, val)
                return res

            for sizes in [(1, 10), (10, 1), (10, 10), (10, 10, 10)]:
                size = min(*sizes)
                x = (torch.randn(*sizes, device=device) * size).to(dtype)
                yield (x, 0)

                # Generate tensors which are being filled at random locations
                # with values from the non-empty subsets of the set (inf, neg_inf, nan)
                # for each dimension.
                n_fill_vals = 3  # cardinality of (inf, neg_inf, nan)
                for dim in range(len(sizes)):
                    idxs = (torch.randint(high=size, size=(size // 10,)) for i in range(n_fill_vals))
                    vals = (inf, neg_inf, nan)
                    subsets = chain.from_iterable(combinations(list(zip(idxs, vals)), r)
                                                  for r in range(1, n_fill_vals + 1))
                    for subset in subsets:
                        idxs_subset, vals_subset = zip(*subset)
                        yield (repeated_index_fill(x, dim, idxs_subset, vals_subset), dim)

        for sample, dim in generate_samples():
            _, idx_torch = sample.sort(dim=dim, stable=True)
            if dtype is torch.bfloat16:
                sample_numpy = sample.float().cpu().numpy()
            else:
                sample_numpy = sample.cpu().numpy()
            idx_numpy = np.argsort(sample_numpy, axis=dim, kind='stable')
            self.assertEqual(idx_torch, idx_numpy)

    @dtypes(*(get_all_int_dtypes() + get_all_fp_dtypes()))
    def test_msort(self, device, dtype):
        if TEST_WITH_ROCM and dtype == torch.bfloat16:
            return

        def test(shape):
            tensor = make_tensor(shape, device, dtype, low=-9, high=9)
            if tensor.size() != torch.Size([]):
                if dtype is torch.bfloat16:
                    expected = torch.from_numpy(np.msort(tensor.float().cpu().numpy())).bfloat16()
                else:
                    expected = torch.from_numpy(np.msort(tensor.cpu().numpy()))
            else:
                expected = tensor  # numpy.msort() does not support empty shapes tensor

            result = torch.msort(tensor)
            self.assertEqual(result, expected)

            out = torch.empty_like(result)
            torch.msort(tensor, out=out)
            self.assertEqual(out, expected)

        shapes = (
            [],
            [0, ],
            [20, ],
            [1, 20],
            [30, 30],
            [10, 20, 30]
        )
        for shape in shapes:
            test(shape)

    def test_topk(self, device):
        def topKViaSort(t, k, dim, dir):
            sorted, indices = t.sort(dim, dir)
            return sorted.narrow(dim, 0, k), indices.narrow(dim, 0, k)

        def compareTensors(t, res1, ind1, res2, ind2, dim):
            # Values should be exactly equivalent
            self.assertEqual(res1, res2, atol=0, rtol=0)

            # Indices might differ based on the implementation, since there is
            # no guarantee of the relative order of selection
            if not ind1.eq(ind2).all():
                # To verify that the indices represent equivalent elements,
                # gather from the input using the topk indices and compare against
                # the sort indices
                vals = t.gather(dim, ind2)
                self.assertEqual(res1, vals, atol=0, rtol=0)

        def compare(t, k, dim, dir):
            topKVal, topKInd = t.topk(k, dim, dir, True)
            sortKVal, sortKInd = topKViaSort(t, k, dim, dir)
            compareTensors(t, sortKVal, sortKInd, topKVal, topKInd, dim)

        t = torch.rand(random.randint(1, SIZE),
                       random.randint(1, SIZE),
                       random.randint(1, SIZE), device=device)

        for _kTries in range(3):
            for _dimTries in range(3):
                for transpose in (True, False):
                    for dir in (True, False):
                        testTensor = t
                        if transpose:
                            dim1 = random.randrange(t.ndimension())
                            dim2 = dim1
                            while dim1 == dim2:
                                dim2 = random.randrange(t.ndimension())

                            testTensor = t.transpose(dim1, dim2)

                        dim = random.randrange(testTensor.ndimension())
                        k = random.randint(1, testTensor.size(dim))
                        compare(testTensor, k, dim, dir)

        # This tests the code path where on CUDA, topk is implemented with sort.
        t = torch.randn((2, 100000), device=device)
        compare(t, 2000, 1, True)
        compare(t, 2000, 1, False)

    def test_topk_arguments(self, device):
        q = torch.randn(10, 2, 10, device=device)
        # Make sure True isn't mistakenly taken as the 2nd dimension (interpreted as 1)
        self.assertRaises(TypeError, lambda: q.topk(4, True))

    @skipCUDAIfRocm
    def test_unique_dim(self, device):
        self.assertFalse(hasattr(torch, 'unique_dim'))

        def run_test(device, dtype):
            x = torch.tensor([[[1., 1.],
                               [0., 1.],
                               [2., 1.],
                               [0., 1.]],
                              [[1., 1.],
                               [0., 1.],
                               [2., 1.],
                               [0., 1.]]],
                             dtype=dtype,
                             device=device)
            x_empty = torch.empty(5, 0, dtype=dtype, device=device)
            x_ill_formed_empty = torch.empty(5, 0, 0, dtype=dtype, device=device)
            x_ill_formed_empty_another = torch.empty(5, 0, 5, dtype=dtype, device=device)
            if dtype in floating_types_and(torch.float16, torch.bfloat16):
                x_nan = torch.tensor([float("nan"), 0, 0, float("nan"), float("nan"), 1], dtype=dtype, device=device)
            expected_unique_dim0 = torch.tensor([[[1., 1.],
                                                  [0., 1.],
                                                  [2., 1.],
                                                  [0., 1.]]],
                                                dtype=dtype,
                                                device=device)
            expected_inverse_dim0 = torch.tensor([0, 0])
            expected_counts_dim0 = torch.tensor([2])
            expected_unique_dim1 = torch.tensor([[[0., 1.],
                                                  [1., 1.],
                                                  [2., 1.]],
                                                 [[0., 1.],
                                                  [1., 1.],
                                                  [2., 1.]]],
                                                dtype=dtype,
                                                device=device)
            expected_unique_dim1_bool = torch.tensor([[[False, True], [True, True]],
                                                      [[False, True], [True, True]]],
                                                     dtype=torch.bool,
                                                     device=device)
            expected_inverse_dim1 = torch.tensor([1, 0, 2, 0])
            expected_inverse_dim1_bool = torch.tensor([1, 0, 1, 0])
            expected_counts_dim1 = torch.tensor([2, 1, 1])
            expected_counts_dim1_bool = torch.tensor([2, 2])
            expected_unique_dim2 = torch.tensor([[[1., 1.],
                                                  [0., 1.],
                                                  [2., 1.],
                                                  [0., 1.]],
                                                 [[1., 1.],
                                                  [0., 1.],
                                                  [2., 1.],
                                                  [0., 1.]]],
                                                dtype=dtype,
                                                device=device)
            expected_inverse_dim2 = torch.tensor([0, 1])
            expected_counts_dim2 = torch.tensor([1, 1])
            expected_unique_empty = torch.tensor([], dtype=dtype, device=device)
            expected_inverse_empty = torch.tensor([], dtype=torch.long, device=device)
            expected_counts_empty = torch.tensor([], dtype=torch.long, device=device)
            if dtype in floating_types_and(torch.float16, torch.bfloat16):
                expected_unique_nan = torch.tensor([float("nan"), 0, float("nan"), float("nan"), 1], dtype=dtype, device=device)
                expected_inverse_nan = torch.tensor([0, 1, 1, 2, 3, 4], dtype=torch.long, device=device)
                expected_counts_nan = torch.tensor([1, 2, 1, 1, 1], dtype=torch.long, device=device)
            # dim0
            x_unique = torch.unique(x, dim=0)
            self.assertEqual(expected_unique_dim0, x_unique)

            x_unique, x_inverse = torch.unique(
                x,
                return_inverse=True,
                dim=0)
            self.assertEqual(expected_unique_dim0, x_unique)
            self.assertEqual(expected_inverse_dim0, x_inverse)

            x_unique, x_counts = torch.unique(
                x,
                return_inverse=False,
                return_counts=True,
                dim=0)
            self.assertEqual(expected_unique_dim0, x_unique)
            self.assertEqual(expected_counts_dim0, x_counts)

            x_unique, x_inverse, x_counts = torch.unique(
                x,
                return_inverse=True,
                return_counts=True,
                dim=0)
            self.assertEqual(expected_unique_dim0, x_unique)
            self.assertEqual(expected_inverse_dim0, x_inverse)
            self.assertEqual(expected_counts_dim0, x_counts)

            # dim1
            x_unique = torch.unique(x, dim=1)
            if x.dtype == torch.bool:
                self.assertEqual(expected_unique_dim1_bool, x_unique)
            else:
                self.assertEqual(expected_unique_dim1, x_unique)

            x_unique, x_inverse = torch.unique(
                x,
                return_inverse=True,
                dim=1)
            if x.dtype == torch.bool:
                self.assertEqual(expected_unique_dim1_bool, x_unique)
                self.assertEqual(expected_inverse_dim1_bool, x_inverse)
            else:
                self.assertEqual(expected_unique_dim1, x_unique)
                self.assertEqual(expected_inverse_dim1, x_inverse)

            x_unique, x_counts = torch.unique(
                x,
                return_inverse=False,
                return_counts=True,
                dim=1)
            if x.dtype == torch.bool:
                self.assertEqual(expected_unique_dim1_bool, x_unique)
                self.assertEqual(expected_counts_dim1_bool, x_counts)
            else:
                self.assertEqual(expected_unique_dim1, x_unique)
                self.assertEqual(expected_counts_dim1, x_counts)

            x_unique, x_inverse, x_counts = torch.unique(
                x,
                return_inverse=True,
                return_counts=True,
                dim=1)
            if x.dtype == torch.bool:
                self.assertEqual(expected_unique_dim1_bool, x_unique)
                self.assertEqual(expected_inverse_dim1_bool, x_inverse)
                self.assertEqual(expected_counts_dim1_bool, x_counts)
            else:
                self.assertEqual(expected_unique_dim1, x_unique)
                self.assertEqual(expected_inverse_dim1, x_inverse)
                self.assertEqual(expected_counts_dim1, x_counts)

            # dim2
            x_unique = torch.unique(x, dim=2)
            self.assertEqual(expected_unique_dim2, x_unique)

            x_unique, x_inverse = torch.unique(
                x,
                return_inverse=True,
                dim=2)
            self.assertEqual(expected_unique_dim2, x_unique)
            self.assertEqual(expected_inverse_dim2, x_inverse)

            x_unique, x_counts = torch.unique(
                x,
                return_inverse=False,
                return_counts=True,
                dim=2)
            self.assertEqual(expected_unique_dim2, x_unique)
            self.assertEqual(expected_counts_dim2, x_counts)

            x_unique, x_inverse, x_counts = torch.unique(
                x,
                return_inverse=True,
                return_counts=True,
                dim=2)
            self.assertEqual(expected_unique_dim2, x_unique)
            self.assertEqual(expected_inverse_dim2, x_inverse)
            self.assertEqual(expected_counts_dim2, x_counts)

            # test empty tensor
            x_unique, x_inverse, x_counts = torch.unique(
                x_empty,
                return_inverse=True,
                return_counts=True,
                dim=1)
            self.assertEqual(expected_unique_empty, x_unique)
            self.assertEqual(expected_inverse_empty, x_inverse)
            self.assertEqual(expected_counts_empty, x_counts)

            # test tensor with nan
            if dtype in floating_types_and(torch.float16, torch.bfloat16):
                x_unique, x_inverse, x_counts = torch.unique(
                    x_nan,
                    return_inverse=True,
                    return_counts=True,
                    dim=0)
                self.assertEqual(expected_unique_nan, x_unique)
                self.assertEqual(expected_inverse_nan, x_inverse)
                self.assertEqual(expected_counts_nan, x_counts)

            # test not a well formed tensor
            # Checking for runtime error, as this is the expected behaviour
            with self.assertRaises(RuntimeError):
                torch.unique(
                    x_ill_formed_empty,
                    return_inverse=True,
                    return_counts=True,
                    dim=1)

            # test along dim2
            with self.assertRaises(RuntimeError):
                torch.unique(
                    x_ill_formed_empty_another,
                    return_inverse=True,
                    return_counts=True,
                    dim=2)

            # test consecutive version
            y = torch.tensor(
                [[0, 1],
                 [0, 1],
                 [0, 1],
                 [1, 2],
                 [1, 2],
                 [3, 4],
                 [0, 1],
                 [0, 1],
                 [3, 4],
                 [1, 2]],
                dtype=dtype,
                device=device
            )
            # test tensor with nan
            if dtype in floating_types_and(torch.float16, torch.bfloat16):
                y_nan = torch.tensor([float("nan"), 0, 0, float("nan"), float("nan"), 1], dtype=dtype, device=device)
            expected_y_unique = torch.tensor(
                [[0, 1],
                 [1, 2],
                 [3, 4],
                 [0, 1],
                 [3, 4],
                 [1, 2]],
                dtype=dtype,
                device=device
            )
            expected_y_inverse = torch.tensor([0, 0, 0, 1, 1, 2, 3, 3, 4, 5], dtype=torch.int64, device=device)
            expected_y_counts = torch.tensor([3, 2, 1, 2, 1, 1], dtype=torch.int64, device=device)
            expected_y_inverse_bool = torch.tensor([0, 0, 0, 1, 1, 1, 2, 2, 3, 3], dtype=torch.int64, device=device)
            expected_y_counts_bool = torch.tensor([3, 3, 2, 2], dtype=torch.int64, device=device)
            if dtype in floating_types_and(torch.float16, torch.bfloat16):
                expected_y_unique_nan = torch.tensor([float("nan"), 0, float("nan"), float("nan"), 1], dtype=dtype, device=device)
                expected_y_inverse_nan = torch.tensor([0, 1, 1, 2, 3, 4], dtype=torch.long, device=device)
                expected_y_counts_nan = torch.tensor([1, 2, 1, 1, 1], dtype=torch.long, device=device)

            y_unique, y_inverse, y_counts = torch.unique_consecutive(y, return_inverse=True, return_counts=True, dim=0)
            if x.dtype == torch.bool:
                self.assertEqual(expected_y_inverse_bool, y_inverse)
                self.assertEqual(expected_y_counts_bool, y_counts)
            else:
                self.assertEqual(expected_y_inverse, y_inverse)
                self.assertEqual(expected_y_counts, y_counts)

            # test tensor with nan
            if dtype in floating_types_and(torch.float16, torch.bfloat16):
                y_unique, y_inverse, y_counts = torch.unique_consecutive(
                    y_nan,
                    return_inverse=True,
                    return_counts=True,
                    dim=0)
                self.assertEqual(expected_y_unique_nan, y_unique)
                self.assertEqual(expected_y_inverse_nan, y_inverse)
                self.assertEqual(expected_y_counts_nan, y_counts)

        run_test(device, torch.float)
        run_test(device, torch.double)
        run_test(device, torch.long)
        run_test(device, torch.uint8)
        run_test(device, torch.bool)

    @onlyCUDA
    def test_topk_noncontiguous_gpu(self, device):
        t = torch.randn(20, device=device)[::2]
        top1, idx1 = t.topk(5)
        top2, idx2 = t.contiguous().topk(5)
        self.assertEqual(top1, top2)
        self.assertEqual(idx1, idx2)

    def _test_topk_dtype(self, device, dtype, integral, size):
        if integral:
            a = torch.randint(torch.iinfo(dtype).min, torch.iinfo(dtype).max,
                              size=(size,), dtype=dtype, device=device)
        else:
            a = torch.randn(size=(size,), dtype=dtype, device=device)

        sort_topk = a.sort()[0][-(size // 2):].flip(0)
        topk = a.topk(size // 2)
        self.assertEqual(sort_topk, topk[0])      # check values
        self.assertEqual(sort_topk, a[topk[1]])   # check indices

    @dtypes(torch.int8, torch.uint8, torch.int16, torch.int32, torch.int64)
    def test_topk_integral(self, device, dtype):
        small = 10
        large = 4096
        for curr_size in (small, large):
            self._test_topk_dtype(device, dtype, True, curr_size)

    @onlyCUDA
    @dtypes(torch.bfloat16)
    @skipCUDAIfRocm
    def test_topk_bfloat16(self, device, dtype):

        small = 10
        large = 8192
        for curr_size in (small, large):
            self._test_topk_dtype(device, dtype, False, curr_size)

    @dtypesIfCUDA(*get_all_fp_dtypes())
    @dtypes(torch.float, torch.double, torch.bfloat16)
    def test_topk_nonfinite(self, device, dtype):
        if TEST_WITH_ROCM and dtype == torch.bfloat16:
            return

        x = torch.tensor([float('nan'), float('inf'), 1e4, 0, -1e4, -float('inf')], device=device, dtype=dtype)
        val, idx = x.topk(4)
        expect = torch.tensor([float('nan'), float('inf'), 1e4, 0], device=device, dtype=dtype)
        self.assertEqual(val, expect)
        self.assertEqual(idx, [0, 1, 2, 3])

        val, idx = x.topk(4, largest=False)
        expect = torch.tensor([-float('inf'), -1e4, 0, 1e4], device=device, dtype=dtype)
        self.assertEqual(val, expect)
        self.assertEqual(idx, [5, 4, 3, 2])

    def test_topk_4d(self, device):
        x = torch.ones(2, 3072, 2, 2, device=device)
        x[:, 1, :, :] *= 2.
        x[:, 10, :, :] *= 1.5
        val, ind = torch.topk(x, k=2, dim=1)
        expected_ind = torch.ones(2, 2, 2, 2, dtype=torch.long, device=device)
        expected_ind[:, 1, :, :] = 10
        expected_val = torch.ones(2, 2, 2, 2, device=device)
        expected_val[:, 0, :, :] *= 2.
        expected_val[:, 1, :, :] *= 1.5
        self.assertEqual(val, expected_val, atol=0, rtol=0)
        self.assertEqual(ind, expected_ind, atol=0, rtol=0)

    @onlyNativeDeviceTypes
    @dtypesIfCUDA(*(get_all_dtypes(include_complex=False,
                                   include_bool=False,
                                   include_half=False,
                                   include_bfloat16=True)))
    @dtypes(*(get_all_dtypes(include_complex=False, include_bool=False, include_half=False, include_bfloat16=False)))
    def test_topk_zero(self, device, dtype):
        if TEST_WITH_ROCM and dtype == torch.bfloat16:
            return

        # https://github.com/pytorch/pytorch/issues/49205
        t = torch.rand(2, 2, device=device).to(dtype=dtype)
        val, idx = torch.topk(t, k=0, largest=False)
        self.assertEqual(val.size(), torch.Size([2, 0]))
        self.assertEqual(idx.size(), torch.Size([2, 0]))

    def _test_unique_scalar_empty(self, dtype, device, f):
        # test scalar
        x = torch.tensor(0, dtype=dtype, device=device)
        unique, inverse, counts = f(x, return_inverse=True, return_counts=True)
        expected_unique = torch.tensor([0], dtype=dtype, device=device)
        expected_inverse = torch.tensor(0, device=device)
        expected_counts = torch.tensor([1], device=device)
        self.assertEqual(unique, expected_unique)
        self.assertEqual(inverse, expected_inverse)
        self.assertEqual(counts, expected_counts)

        # test zero sized tensor
        x = torch.zeros((0, 0, 3), dtype=dtype, device=device)
        unique, inverse, counts = f(x, return_inverse=True, return_counts=True)
        expected_unique = torch.tensor([], dtype=dtype, device=device)
        expected_inverse = torch.empty((0, 0, 3), dtype=torch.long, device=device)
        expected_counts = torch.tensor([], dtype=torch.long, device=device)
        self.assertEqual(unique, expected_unique)
        self.assertEqual(inverse, expected_inverse)
        self.assertEqual(counts, expected_counts)

    def _test_unique_with_expects(self, device, dtype, f, x, expected_unique, expected_inverse, expected_counts, additional_shape):
        def ensure_tuple(x):
            if isinstance(x, torch.Tensor):
                return (x,)
            return x

        for return_inverse in [True, False]:
            for return_counts in [True, False]:
                # test with expected
                ret = ensure_tuple(f(x, return_inverse=return_inverse, return_counts=return_counts))
                self.assertEqual(len(ret), 1 + int(return_inverse) + int(return_counts))
                self.assertEqual(expected_unique, ret[0])
                if return_inverse:
                    self.assertEqual(expected_inverse, ret[1])
                if return_counts:
                    count_index = 1 + int(return_inverse)
                    self.assertEqual(expected_counts, ret[count_index])

                # tests per-element unique on a higher rank tensor.
                y = x.view(additional_shape)
                y_unique, y_inverse, y_counts = f(y, return_inverse=True, return_counts=True)
                self.assertEqual(expected_unique, y_unique)
                self.assertEqual(expected_inverse.view(additional_shape), y_inverse)
                self.assertEqual(expected_counts, y_counts)

    @dtypesIfCPU(*set(get_all_dtypes()) - {torch.complex64, torch.complex128})
    @dtypes(*set(get_all_dtypes()) - {torch.bfloat16, torch.complex64, torch.complex128})
    def test_unique(self, device, dtype):
        if dtype is torch.half and self.device_type == 'cpu':
            return  # CPU does not have half support

        def ensure_tuple(x):
            if isinstance(x, torch.Tensor):
                return (x,)
            return x

        if dtype is torch.bool:
            x = torch.tensor([True, False, False, False, True, False, True, False], dtype=torch.bool, device=device)
            expected_unique = torch.tensor([False, True], dtype=torch.bool, device=device)
            expected_inverse = torch.tensor([1, 0, 0, 0, 1, 0, 1, 0], dtype=torch.long, device=device)
            expected_counts = torch.tensor([5, 3], dtype=torch.long, device=device)
        else:
            x = torch.tensor([1, 2, 3, 2, 8, 5, 2, 3], dtype=dtype, device=device)
            expected_unique = torch.tensor([1, 2, 3, 5, 8], dtype=dtype, device=device)
            expected_inverse = torch.tensor([0, 1, 2, 1, 4, 3, 1, 2], device=device)
            expected_counts = torch.tensor([1, 3, 2, 1, 1], device=device)

        # test sorted unique
        fs = (
            lambda x, **kwargs: torch.unique(x, sorted=True, **kwargs),
            lambda x, **kwargs: x.unique(sorted=True, **kwargs),
        )
        x_sliced = torch.empty(x.size(0) * 2, dtype=dtype, device=device)[::2].copy_(x)
        xs = (x, x_sliced)
        for f, x in product(fs, xs):
            self._test_unique_with_expects(device, dtype, f, x, expected_unique, expected_inverse, expected_counts, (2, 2, 2))
            self._test_unique_scalar_empty(dtype, device, f)

        # test unsorted unique
        fs = (
            lambda x, **kwargs: torch.unique(x, sorted=False, **kwargs),
            lambda x, **kwargs: x.unique(sorted=False, **kwargs)
        )
        for f, x in product(fs, xs):
            self._test_unique_scalar_empty(dtype, device, f)
            for return_inverse, return_counts in product((True, False), repeat=2):
                ret = ensure_tuple(f(x, return_inverse=return_inverse, return_counts=return_counts))
                self.assertEqual(len(ret), 1 + int(return_inverse) + int(return_counts))
                x_list = x.tolist()
                x_unique_list = ret[0].tolist()
                self.assertEqual(expected_unique.tolist(), sorted(x_unique_list))
                if return_inverse:
                    x_inverse_list = ret[1].tolist()
                    for i, j in enumerate(x_inverse_list):
                        self.assertEqual(x_list[i], x_unique_list[j])
                if return_counts:
                    count_index = 1 + int(return_inverse)
                    x_counts_list = ret[count_index].tolist()
                    for i, j in zip(x_unique_list, x_counts_list):
                        count = 0
                        for k in x_list:
                            if k == i:
                                count += 1
                        self.assertEqual(j, count)

    @dtypesIfCPU(*set(get_all_dtypes()) - {torch.complex64, torch.complex128})
    @dtypes(*set(get_all_dtypes()) - {torch.bfloat16, torch.complex64, torch.complex128})
    def test_unique_consecutive(self, device, dtype):
        if dtype is torch.half and self.device_type == 'cpu':
            return  # CPU does not have half support

        if dtype is torch.bool:
            x = torch.tensor([True, False, False, False, True, True, False, False, False], dtype=torch.bool, device=device)
            expected_unique = torch.tensor([True, False, True, False], dtype=torch.bool, device=device)
            expected_inverse = torch.tensor([0, 1, 1, 1, 2, 2, 3, 3, 3], dtype=torch.long, device=device)
            expected_counts = torch.tensor([1, 3, 2, 3], dtype=torch.long, device=device)
        else:
            x = torch.tensor([1, 2, 2, 2, 5, 5, 2, 2, 3], dtype=dtype, device=device)
            expected_unique = torch.tensor([1, 2, 5, 2, 3], dtype=dtype, device=device)
            expected_inverse = torch.tensor([0, 1, 1, 1, 2, 2, 3, 3, 4], device=device)
            expected_counts = torch.tensor([1, 3, 2, 2, 1], device=device)

        for f in [torch.unique_consecutive, lambda x, **kwargs: x.unique_consecutive(**kwargs)]:
            self._test_unique_with_expects(device, dtype, f, x, expected_unique, expected_inverse, expected_counts, (3, 3))
            self._test_unique_scalar_empty(dtype, device, f)

    @dtypes(torch.double)
    def test_kthvalue(self, device, dtype):
        SIZE = 50
        x = torch.rand(SIZE, SIZE, SIZE, dtype=dtype, device=device)
        x0 = x.clone()

        k = random.randint(1, SIZE)
        res1val, res1ind = torch.kthvalue(x, k, keepdim=False)
        res2val, res2ind = torch.sort(x)

        self.assertEqual(res1val[:, :], res2val[:, :, k - 1], atol=0, rtol=0)
        self.assertEqual(res1ind[:, :], res2ind[:, :, k - 1], atol=0, rtol=0)
        # test use of result tensors
        k = random.randint(1, SIZE)
        res1val = torch.tensor([], dtype=dtype, device=device)
        res1ind = torch.tensor([], dtype=torch.long, device=device)
        torch.kthvalue(x, k, keepdim=False, out=(res1val, res1ind))
        res2val, res2ind = torch.sort(x)
        self.assertEqual(res1val[:, :], res2val[:, :, k - 1], atol=0, rtol=0)
        self.assertEqual(res1ind[:, :], res2ind[:, :, k - 1], atol=0, rtol=0)

        # test non-default dim
        k = random.randint(1, SIZE)
        res1val, res1ind = torch.kthvalue(x, k, 0, keepdim=False)
        res2val, res2ind = torch.sort(x, 0)
        self.assertEqual(res1val, res2val[k - 1], atol=0, rtol=0)
        self.assertEqual(res1ind, res2ind[k - 1], atol=0, rtol=0)

        # non-contiguous
        y = x.narrow(1, 0, 1)
        y0 = y.contiguous()
        k = random.randint(1, SIZE)
        res1val, res1ind = torch.kthvalue(y, k)
        res2val, res2ind = torch.kthvalue(y0, k)
        self.assertEqual(res1val, res2val, atol=0, rtol=0)
        self.assertEqual(res1ind, res2ind, atol=0, rtol=0)

        # non-contiguous [Reference: https://github.com/pytorch/pytorch/issues/45721]
        non_contig_t = torch.tensor([0, -1, 1, -2, 2], dtype=dtype, device=device)[::2]
        expected_val, expected_ind = non_contig_t.contiguous().kthvalue(2)
        non_contig_cpu_t = non_contig_t.cpu()
        expected_val_cpu, expected_ind_cpu = non_contig_cpu_t.kthvalue(2)

        out_val, out_ind = non_contig_t.kthvalue(2)
        self.assertEqual(expected_val, out_val, atol=0, rtol=0)
        self.assertEqual(expected_ind, out_ind, atol=0, rtol=0)
        self.assertEqual(expected_val_cpu, out_val, atol=0, rtol=0)
        self.assertEqual(expected_ind_cpu, out_ind, atol=0, rtol=0)

        # check that the input wasn't modified
        self.assertEqual(x, x0, atol=0, rtol=0)

        # simple test case (with repetitions)
        y = torch.tensor((3., 5, 4, 1, 1, 5), dtype=dtype, device=device)
        self.assertEqual(torch.kthvalue(y, 3)[0], 3, atol=0, rtol=0)
        self.assertEqual(torch.kthvalue(y, 2)[0], 1, atol=0, rtol=0)

        # simple test case (with NaN)
        SIZE = 50
        x = torch.rand(SIZE, SIZE, SIZE, dtype=dtype, device=device)
        x[torch.arange(SIZE), :, torch.randint(50, (50,))] = nan
        ks = [random.randint(1, SIZE), 1, SIZE, SIZE - 1]
        res2val, res2ind = torch.sort(x)
        for k in ks:
            res1val, res1ind = torch.kthvalue(x, k, keepdim=False)
            self.assertEqual(res1val[:, :], res2val[:, :, k - 1], atol=0, rtol=0)
            self.assertEqual(res1ind[:, :], res2ind[:, :, k - 1], atol=0, rtol=0)

    @dtypes(torch.float)
    @onlyNativeDeviceTypes   # Fails on XLA
    def test_kthvalue_scalar(self, device, dtype):
        # Test scalar input (test case from https://github.com/pytorch/pytorch/issues/30818)
        # Tests that passing a scalar tensor or 1D tensor with 1 element work either way
        res = torch.tensor(2, device=device, dtype=dtype).kthvalue(1)
        ref = torch.tensor([2], device=device, dtype=dtype).kthvalue(1)
        self.assertEqual(res[0], ref[0].squeeze())
        self.assertEqual(res[1], ref[1].squeeze())

    @dtypes(*all_types())
    @dtypesIfCUDA(*all_types_and(torch.half))
    def test_isin(self, device, dtype):
        def assert_isin_equal(a, b):
            # Compare to the numpy reference implementation.
            x = torch.isin(a, b)
            a = a.cpu().numpy() if torch.is_tensor(a) else np.array(a)
            b = b.cpu().numpy() if torch.is_tensor(b) else np.array(b)
            y = np.isin(a, b)
            self.assertEqual(x, y)

        # multi-dim tensor, multi-dim tensor
        a = torch.arange(24, device=device, dtype=dtype).reshape([2, 3, 4])
        b = torch.tensor([[10, 20, 30], [0, 1, 3], [11, 22, 33]], device=device, dtype=dtype)
        assert_isin_equal(a, b)

        # zero-dim tensor
        zero_d = torch.tensor(3, device=device, dtype=dtype)
        assert_isin_equal(zero_d, b)
        assert_isin_equal(a, zero_d)
        assert_isin_equal(zero_d, zero_d)

        # empty tensor
        empty = torch.tensor([], device=device, dtype=dtype)
        assert_isin_equal(empty, b)
        assert_isin_equal(a, empty)
        assert_isin_equal(empty, empty)

        # scalar
        assert_isin_equal(a, 6)
        assert_isin_equal(5, b)

        def define_expected(lst, invert=False):
            expected = torch.tensor(lst, device=device)
            if invert:
                expected = expected.logical_not()
            return expected

        # Adapted from numpy's in1d tests
        for mult in [1, 10]:
            for invert in [False, True]:
                a = torch.tensor([5, 7, 1, 2], device=device, dtype=dtype)
                b = torch.tensor([2, 4, 3, 1, 5] * mult, device=device, dtype=dtype)
                ec = define_expected([True, False, True, True], invert=invert)
                c = torch.isin(a, b, assume_unique=True, invert=invert)
                self.assertEqual(c, ec)

                a[0] = 8
                ec = define_expected([False, False, True, True], invert=invert)
                c = torch.isin(a, b, assume_unique=True, invert=invert)
                self.assertEqual(c, ec)

                a[0], a[3] = 4, 8
                ec = define_expected([True, False, True, False], invert=invert)
                c = torch.isin(a, b, assume_unique=True, invert=invert)
                self.assertEqual(c, ec)

                a = torch.tensor([5, 4, 5, 3, 4, 4, 3, 4, 3, 5, 2, 1, 5, 5], device=device, dtype=dtype)
                b = torch.tensor([2, 3, 4] * mult, device=device, dtype=dtype)
                ec = define_expected([False, True, False, True, True, True, True, True, True,
                                      False, True, False, False, False], invert=invert)
                c = torch.isin(a, b, invert=invert)
                self.assertEqual(c, ec)

                b = torch.tensor([2, 3, 4] * mult + [5, 5, 4] * mult, device=device, dtype=dtype)
                ec = define_expected([True, True, True, True, True, True, True, True, True, True,
                                      True, False, True, True], invert=invert)
                c = torch.isin(a, b, invert=invert)
                self.assertEqual(c, ec)

                a = torch.tensor([5, 7, 1, 2], device=device, dtype=dtype)
                b = torch.tensor([2, 4, 3, 1, 5] * mult, device=device, dtype=dtype)
                ec = define_expected([True, False, True, True], invert=invert)
                c = torch.isin(a, b, invert=invert)
                self.assertEqual(c, ec)

                a = torch.tensor([5, 7, 1, 1, 2], device=device, dtype=dtype)
                b = torch.tensor([2, 4, 3, 3, 1, 5] * mult, device=device, dtype=dtype)
                ec = define_expected([True, False, True, True, True], invert=invert)
                c = torch.isin(a, b, invert=invert)
                self.assertEqual(c, ec)

                a = torch.tensor([5, 5], device=device, dtype=dtype)
                b = torch.tensor([2, 2] * mult, device=device, dtype=dtype)
                ec = define_expected([False, False], invert=invert)
                c = torch.isin(a, b, invert=invert)
                self.assertEqual(c, ec)

                # multi-dimensional input case using sort-based algo
                for assume_unique in [False, True]:
                    a = torch.arange(6, device=device, dtype=dtype).reshape([2, 3])
                    b = torch.arange(3, 30, device=device, dtype=dtype)
                    ec = define_expected([[False, False, False], [True, True, True]], invert=invert)
                    c = torch.isin(a, b, invert=invert, assume_unique=assume_unique)
                    self.assertEqual(c, ec)

    def test_isin_different_dtypes(self, device):
        supported_types = all_types() if device == 'cpu' else all_types_and(torch.half)
        for mult in [1, 10]:
            for assume_unique in [False, True]:
                for dtype1, dtype2 in product(supported_types, supported_types):
                    a = torch.tensor([1, 2, 3], device=device, dtype=dtype1)
                    b = torch.tensor([3, 4, 5] * mult, device=device, dtype=dtype2)
                    ec = torch.tensor([False, False, True], device=device)
                    c = torch.isin(a, b, assume_unique=assume_unique)
                    self.assertEqual(c, ec)

    @onlyCUDA
    @dtypes(*all_types())
    def test_isin_different_devices(self, device, dtype):
        a = torch.arange(6, device=device, dtype=dtype).reshape([2, 3])
        b = torch.arange(3, 30, device='cpu', dtype=dtype)
        with self.assertRaises(RuntimeError):
            torch.isin(a, b)

        c = torch.arange(6, device='cpu', dtype=dtype).reshape([2, 3])
        d = torch.arange(3, 30, device=device, dtype=dtype)
        with self.assertRaises(RuntimeError):
            torch.isin(c, d)
Exemple #3
0
class TestForeach(TestCase):
    @property
    def is_cuda(self):
        return self.device_type == 'cuda'

    # note(mkozuki): It might be the case that the expected number of `cudaLaunchKernel`s
    # is greater than 1 once foreach functions internally separate their input `TensorList`s by
    # devices & dtypes into vectors of tensors.
    def _get_funcs(self, op, n_expected_cudaLaunchKernels: int):
        return (
            ForeachFuncWrapper(op.method_variant,
                               n_expected_cudaLaunchKernels),
            RegularFuncWrapper(op.ref),
            ForeachFuncWrapper(op.inplace_variant,
                               n_expected_cudaLaunchKernels),
            RegularFuncWrapper(op.ref_inplace),
        )

    def _binary_test(self,
                     dtype,
                     op,
                     ref,
                     inputs,
                     is_fastpath,
                     is_inplace,
                     *,
                     alpha=None):
        ref_inputs = [[t.clone().detach() for t in inputs[0]], inputs[1]
                      ] if is_inplace else inputs
        try:
            actual = op(inputs, self.is_cuda, is_fastpath)
        except RuntimeError as e:
            with self.assertRaisesRegex(type(e), re.escape(str(e))):
                ref(ref_inputs)
        else:
            expected = ref(ref_inputs)
            self.assertEqual(actual, expected)
        if alpha is not None:
            kwargs = {'alpha': alpha}
            ref_inputs = inputs
            try:
                actual = op(inputs, self.is_cuda, is_fastpath, **kwargs)
            except RuntimeError as e:
                with self.assertRaisesRegex(type(e), re.escape(str(e))):
                    ref(ref_inputs, **kwargs)
            else:
                expected = ref(ref_inputs, **kwargs)
                if dtype in (torch.float16, torch.bfloat16) and TEST_WITH_ROCM:
                    self.assertEqual(expected,
                                     actual,
                                     atol=1.e-3,
                                     rtol=default_tolerances(dtype)[0])
                else:
                    self.assertEqual(expected, actual)

    def _test_binary_op_tensorlists(self, device, dtype, opinfo, N,
                                    is_fastpath, disable_fastpath):
        n_expected_cudaLaunchKernels = N if disable_fastpath else 1
        op, ref, inplace_op, inplace_ref = self._get_funcs(
            opinfo, n_expected_cudaLaunchKernels)
        inputs = [
            opinfo.sample_inputs(device,
                                 dtype,
                                 N,
                                 noncontiguous=not is_fastpath),
            opinfo.sample_inputs(device,
                                 dtype,
                                 N,
                                 noncontiguous=not is_fastpath),
        ]
        self._binary_test(dtype,
                          op,
                          ref,
                          inputs,
                          is_fastpath,
                          is_inplace=False)
        self._binary_test(dtype,
                          inplace_op,
                          inplace_ref,
                          inputs,
                          is_fastpath,
                          is_inplace=True)
        if opinfo.supports_alpha_param:
            alpha = None
            if dtype in integral_types():
                alpha = 3
            elif dtype.is_complex:
                alpha = complex(3, 3)
            else:
                alpha = 3.14
            self._binary_test(dtype,
                              op,
                              ref,
                              inputs,
                              is_fastpath,
                              is_inplace=False,
                              alpha=alpha)
            self._binary_test(dtype,
                              inplace_op,
                              inplace_ref,
                              inputs,
                              is_fastpath,
                              is_inplace=True,
                              alpha=alpha)

        # Tests of implicit broadcasting
        # When sizes of tensors don't match, foreach functions are supposed to choose slow path
        # even if this methods's argument `is_fastpath` is True.
        # `cudaLaunchKernel` will be equal to `N`. For assert in `ForeachFuncWrapper` to pass,
        # we pass `is_fastpath and disable_fastpath` to `_binary_test`'s argument of is_fastpath.
        # as n_expected_cudaLaunchKernels is N if disable_fastpath.
        inputs = [
            opinfo.sample_inputs(device,
                                 dtype,
                                 N,
                                 noncontiguous=not is_fastpath),
            [
                make_tensor((N - i, 1),
                            device=device,
                            dtype=dtype,
                            noncontiguous=not is_fastpath) for i in range(N)
            ],
        ]
        self._binary_test(dtype,
                          op,
                          ref,
                          inputs,
                          is_fastpath and disable_fastpath,
                          is_inplace=False)
        self._binary_test(dtype,
                          inplace_op,
                          inplace_ref,
                          inputs,
                          is_fastpath and disable_fastpath,
                          is_inplace=True)

    @skipMeta
    @ops(foreach_binary_op_db)
    def test_binary_op_tensorlists_fastpath(self, device, dtype, op):
        for N in N_values:
            disable_fastpath = op.ref == torch.div and dtype in integral_types_and(
                torch.bool)
            if op.ref == torch.add and dtype == torch.bool:
                disable_fastpath = True
            self._test_binary_op_tensorlists(device, dtype, op, N, True,
                                             disable_fastpath)

    @ops(foreach_binary_op_db)
    def test_binary_op_tensorlists_slowpath(self, device, dtype, op):
        for N in N_values:
            self._test_binary_op_tensorlists(device, dtype, op, N, False,
                                             False)

    def _test_binary_op_scalar(self, device, dtype, opinfo, N, scalar,
                               is_fastpath, disable_fastpath):
        n_expected_cudaLaunchKernels = N if disable_fastpath else 1
        op, ref, inplace_op, inplace_ref = self._get_funcs(
            opinfo, n_expected_cudaLaunchKernels)
        inputs = [
            opinfo.sample_inputs(device,
                                 dtype,
                                 N,
                                 noncontiguous=not is_fastpath), scalar
        ]
        self._binary_test(dtype,
                          op,
                          ref,
                          inputs,
                          is_fastpath,
                          is_inplace=False)
        self._binary_test(dtype,
                          inplace_op,
                          inplace_ref,
                          inputs,
                          is_fastpath,
                          is_inplace=True)

    @skipMeta
    @ops(foreach_binary_op_db)
    def test_binary_op_scalar_fastpath(self, device, dtype, op):
        for N, scalar in itertools.product(N_values, Scalars):
            disable_fastpath = op.ref == torch.div and dtype in integral_types_and(
                torch.bool)
            if isinstance(scalar, int):
                disable_fastpath |= dtype == torch.bool
            if isinstance(scalar, float):
                disable_fastpath |= dtype in integral_types_and(torch.bool)
            if isinstance(scalar, bool):
                disable_fastpath |= dtype == torch.bool
                if op.ref in (torch.add, torch.mul):
                    disable_fastpath = False
            if isinstance(scalar, complex):
                disable_fastpath |= dtype not in complex_types()
            self._test_binary_op_scalar(device, dtype, op, N, scalar, True,
                                        disable_fastpath)

    @ops(foreach_binary_op_db)
    def test_binary_op_scalar_slowpath(self, device, dtype, op):
        for N, scalar in itertools.product(N_values, Scalars):
            self._test_binary_op_scalar(device, dtype, op, N, scalar, False,
                                        False)

    def _test_binary_op_scalarlist(self, device, dtype, opinfo, N, scalarlist,
                                   is_fastpath, disable_fastpath):
        n_expected_cudaLaunchKernels = N if disable_fastpath else 1
        op, ref, inplace_op, inplace_ref = self._get_funcs(
            opinfo, n_expected_cudaLaunchKernels)
        inputs = [
            opinfo.sample_inputs(device,
                                 dtype,
                                 N,
                                 noncontiguous=not is_fastpath), scalarlist
        ]
        self._binary_test(dtype,
                          op,
                          ref,
                          inputs,
                          is_fastpath,
                          is_inplace=False)
        self._binary_test(dtype,
                          inplace_op,
                          inplace_ref,
                          inputs,
                          is_fastpath,
                          is_inplace=True)

    # note(mkozuki): Why two functions depending on with/without bool?
    # `foreach_sub` & `foreach_sub_` do `sub_check(tensors[i], scalars[i])` from i=1...N.
    # So, if scalarlist has one or more bool values, `foreach_sub` and `foreach_sub_`
    # raise bool subtraction error before doing any math.
    # While regular `sub` and `sub_` do some math until they encounter bool.
    # So, foreach sub's throw bool sub error first. However, regular sub's throw different
    # errors depending on the order of scalarlist. To keep actual unit test impl simple,
    # separating mixed scalarlist tests. By setting the first element of scalarlist to bool,
    # they are expected to throw bool sub error even in inplace test.
    @skipMeta
    @ops(foreach_binary_op_db)
    def test_binary_op_scalarlist_fastpath(self, device, dtype, op):
        for N in N_values:
            for type_str, scalarlist in getScalarLists(N):
                bool_int_div = op.ref == torch.div and dtype in integral_types_and(
                    torch.bool)
                disable_fastpath = bool_int_div
                if type_str == "int":
                    disable_fastpath |= dtype == torch.bool
                if type_str == "float":
                    disable_fastpath |= dtype in integral_types_and(torch.bool)
                if type_str == "complex":
                    disable_fastpath |= dtype not in complex_types()
                if type_str == "mixed":
                    disable_fastpath |= True and dtype not in complex_types()
                self._test_binary_op_scalarlist(device, dtype, op, N,
                                                scalarlist, True,
                                                disable_fastpath)

    @ops(foreach_binary_op_db)
    def test_binary_op_scalarlist_slowpath(self, device, dtype, op):
        for N in N_values:
            for _, scalarlist in getScalarLists(N):
                self._test_binary_op_scalarlist(device, dtype, op, N,
                                                scalarlist, False, False)

    def _pointwise_test(self,
                        dtype,
                        op,
                        ref,
                        inputs,
                        is_fastpath,
                        is_inplace,
                        *,
                        values=None):
        ref_inputs = [[t.clone().detach() for t in inputs[0]], inputs[1],
                      inputs[2]] if is_inplace else inputs
        try:
            actual = op(inputs, self.is_cuda, is_fastpath)
        except RuntimeError as e:
            with self.assertRaisesRegex(type(e), re.escape(str(e))):
                ref(ref_inputs)
        else:
            expected = ref(ref_inputs)
            self.assertEqual(expected, actual)
        if values is not None:
            try:
                actual = op(inputs + [values], self.is_cuda, is_fastpath)
            except RuntimeError as e:
                with self.assertRaisesRegex(type(e), re.escape(str(e))):
                    ref(ref_inputs, values=values)
            else:
                expected = ref(ref_inputs, values=values)
                self.assertEqual(expected, actual)

    def _test_pointwise_op(self,
                           device,
                           dtype,
                           opinfo,
                           N,
                           is_fastpath,
                           disable_fastpath,
                           *,
                           values=None):
        n_expected_cudaLaunchKernels = N if disable_fastpath else 1
        op, ref, inplace_op, inplace_ref = self._get_funcs(
            opinfo, n_expected_cudaLaunchKernels)
        inputs = [
            opinfo.sample_inputs(device,
                                 dtype,
                                 N,
                                 noncontiguous=not is_fastpath),
            opinfo.sample_inputs(device,
                                 dtype,
                                 N,
                                 noncontiguous=not is_fastpath),
            opinfo.sample_inputs(device,
                                 dtype,
                                 N,
                                 noncontiguous=not is_fastpath),
        ]
        self._pointwise_test(dtype,
                             op,
                             ref,
                             inputs,
                             is_fastpath,
                             is_inplace=False,
                             values=values)
        self._pointwise_test(dtype,
                             inplace_op,
                             inplace_ref,
                             inputs,
                             is_fastpath,
                             is_inplace=True,
                             values=values)

        # Tests of implicit broadcasting
        inputs = [
            opinfo.sample_inputs(device,
                                 dtype,
                                 N,
                                 noncontiguous=not is_fastpath,
                                 same_size=True),
            [
                make_tensor((N - i, 1),
                            device=device,
                            dtype=dtype,
                            noncontiguous=not is_fastpath) for i in range(N)
            ],
            [
                make_tensor((1, N - i),
                            device=device,
                            dtype=dtype,
                            noncontiguous=not is_fastpath) for i in range(N)
            ],
        ]
        self._pointwise_test(dtype,
                             op,
                             ref,
                             inputs,
                             is_fastpath and disable_fastpath,
                             is_inplace=False,
                             values=values)
        self._pointwise_test(dtype,
                             inplace_op,
                             inplace_ref,
                             inputs,
                             is_fastpath and disable_fastpath,
                             is_inplace=True,
                             values=values)

    @skipMeta
    @ops(foreach_pointwise_op_db)
    def test_pointwise_op_fastpath(self, device, dtype, op):
        disable_fastpath = dtype in integral_types_and(torch.bool)
        # for N, scalar in itertools.product(N_values, Scalars):
        for N in N_values:
            self._test_pointwise_op(device, dtype, op, N, True,
                                    disable_fastpath)
            for scalar in Scalars:
                self._test_pointwise_op(device,
                                        dtype,
                                        op,
                                        N,
                                        True,
                                        disable_fastpath,
                                        values=scalar)
            for _, scalarlist in getScalarLists(N):
                self._test_pointwise_op(device,
                                        dtype,
                                        op,
                                        N,
                                        True,
                                        disable_fastpath,
                                        values=scalarlist)

    @ops(foreach_pointwise_op_db)
    def test_pointwise_op_slowpath(self, device, dtype, op):
        # for N, scalar in itertools.product(N_values, Scalars):
        for N in N_values:
            self._test_pointwise_op(device, dtype, op, N, False, False)
            for scalar in Scalars:
                self._test_pointwise_op(device,
                                        dtype,
                                        op,
                                        N,
                                        False,
                                        False,
                                        values=scalar)
            for _, scalarlist in getScalarLists(N):
                self._test_pointwise_op(device,
                                        dtype,
                                        op,
                                        N,
                                        False,
                                        False,
                                        values=scalarlist)

    # note(mkozuki): fastpath test uses dtypes which fastpath implementation supports.
    # To confirm the dtypes of `OpInfo` cover the dtypes that the function support,
    # this test does not use `try-except` for fastpath.
    def _regular_unary_test(self, dtype, op, ref, inputs, is_fastpath):
        if is_fastpath:
            self.assertEqual(ref(inputs), op(inputs, self.is_cuda,
                                             is_fastpath))
            return
        try:
            actual = op(inputs, self.is_cuda, is_fastpath)
        except RuntimeError as e:
            with self.assertRaisesRegex(type(e), re.escape(str(e))):
                ref(inputs)
        else:
            expected = ref(inputs)
            self.assertEqual(actual, expected)

    # note(mkozuki): why `try-except` for both fastpath?
    # - inputs for fastpath can be integer tensors.
    #    - this is becase opinfo dtypes are configured for outpulace implementation
    # - for integer inputs, trigonometric functions and exponential function returns float outputs,
    #   which causes "result type Float can't be case to the desired type" error.
    # Thus, `try-except` is used even if `is_fastpath` is `True`.
    def _inplace_unary_test(self, dtype, inplace, inplace_ref, inputs,
                            is_fastpath):
        copied_inputs = [[t.clone().detach() for t in tensors]
                         for tensors in inputs]
        try:
            inplace(inputs, self.is_cuda, is_fastpath)
        except RuntimeError as e:
            with self.assertRaisesRegex(type(e), re.escape(str(e))):
                inplace_ref(copied_inputs)
        else:
            inplace_ref(copied_inputs),
            self.assertEqual(copied_inputs, inputs)

    def _test_unary(self, device, dtype, opinfo, N, is_fastpath):
        op, ref, inplace_op, inplace_ref = self._get_funcs(opinfo, 1)
        inputs = opinfo.sample_inputs(device,
                                      dtype,
                                      N,
                                      noncontiguous=not is_fastpath),
        # note(mkozuki): Complex inputs for `_foreach_abs` go through slowpath.
        if opinfo.name == "_foreach_abs" and dtype in complex_types():
            is_fastpath = False
        self._regular_unary_test(dtype, op, ref, inputs, is_fastpath)
        self._inplace_unary_test(dtype, inplace_op, inplace_ref, inputs,
                                 is_fastpath)

    @skipMeta
    @ops(foreach_unary_op_db)
    def test_unary_fastpath(self, device, dtype, op):
        for N in N_values:
            self._test_unary(device, dtype, op, N, is_fastpath=True)

    @ops(foreach_unary_op_db,
         dtypes=all_types_and_complex_and(torch.half, torch.bfloat16,
                                          torch.bool))
    def test_unary_slowpath(self, device, dtype, op):
        for N in N_values:
            self._test_unary(device, dtype, op, N, is_fastpath=False)

    # note(crcrpar): `torch.maximum` and `torch.minimum` support `out` arg but there seem to be no inplace versions.
    # So, compare `inplace_op` results with `ref`'s outputs.
    def _minmax_test(self, opinfo, inputs, is_fastpath,
                     n_expected_cudaLaunchKernels):
        op, ref, inplace_op, _ = self._get_funcs(opinfo,
                                                 n_expected_cudaLaunchKernels)
        expected = ref(inputs)
        self.assertEqual(expected, op(inputs, self.is_cuda, is_fastpath))

        inplace_inputs = [[t.clone() for t in inputs[0]], inputs[1]]
        inplace_op(inplace_inputs, self.is_cuda, is_fastpath)
        self.assertEqual(expected, inplace_inputs[0])

    @ops(foreach_minmax_op_db)
    def test_minmax_fastpath(self, device, dtype, op):
        for N in N_values:
            inputs = tuple(
                op.sample_inputs(device, dtype, N) for _ in range(2))
            self._minmax_test(op, inputs, True,
                              N if dtype == torch.bool else 1)

    @ops(foreach_minmax_op_db,
         dtypes=all_types_and(torch.half, torch.bfloat16, torch.bool))
    def test_minmax_slowpath(self, device, dtype, op):
        for N in N_values:
            inputs = tuple(
                op.sample_inputs(device, dtype, N, noncontiguous=True)
                for _ in range(2))
            self._minmax_test(op, inputs, False, 1)

    # note(mkozuki): ForeachFuncInfo's of both `_foreach_maximum` and `_foreach_minimum` include integer types.
    # so, manually limit dtypes to fp types for inf&nan tests.
    @ops(foreach_minmax_op_db,
         dtypes=floating_types_and(torch.half, torch.bfloat16))
    def test_minmax_float_inf_nan(self, device, dtype, op):
        inputs = (
            [
                torch.tensor([float('inf')], device=device, dtype=dtype),
                torch.tensor([-float('inf')], device=device, dtype=dtype),
                torch.tensor([float('nan')], device=device, dtype=dtype),
                torch.tensor([float('nan')], device=device, dtype=dtype)
            ],
            [
                torch.tensor([-float('inf')], device=device, dtype=dtype),
                torch.tensor([float('inf')], device=device, dtype=dtype),
                torch.tensor([float('inf')], device=device, dtype=dtype),
                torch.tensor([float('nan')], device=device, dtype=dtype)
            ],
        )
        self._minmax_test(op, inputs, True, 1)

    def _reduce_test(self, opinfo, inputs, ord, is_fastpath,
                     n_expected_cudaLaunchKernels):
        op, ref, _, _ = self._get_funcs(opinfo, n_expected_cudaLaunchKernels)
        self.assertEqual(ref(inputs, ord=ord),
                         op(inputs, self.is_cuda, is_fastpath, ord=ord))

    @ops(foreach_reduce_op_db)
    def test_reduce_fastpath(self, device, dtype, op):
        for N, ord in itertools.product(N_values, (0, 1, 2, -1, -2)):
            if ord in (1, 2) and dtype in floating_types_and(
                    torch.half, torch.bfloat16):
                n_expected_cudaLaunchKernels = 3
            else:
                n_expected_cudaLaunchKernels = N
            inputs = op.sample_inputs(device, dtype, N, noncontiguous=False),
            self._reduce_test(op, inputs, ord, True,
                              n_expected_cudaLaunchKernels)

    @ops(foreach_reduce_op_db)
    def test_reduce_slowpath(self, device, dtype, op):
        for N, ord in itertools.product(N_values, (0, 1, 2, -1, -2)):
            inputs = op.sample_inputs(device, dtype, N, noncontiguous=True),
            self._reduce_test(op, inputs, ord, False, 1)

    @dtypes(*all_types_and_complex_and(torch.half, torch.bfloat16, torch.bool))
    def test_add_scalar_with_empty_list_and_empty_tensor(self, device, dtype):
        # TODO: enable empty list case
        for tensors in [[torch.randn([0])]]:
            res = torch._foreach_add(tensors, 1)
            self.assertEqual(res, tensors)

            torch._foreach_add_(tensors, 1)
            self.assertEqual(res, tensors)

    @ops(foreach_binary_op_db,
         dtypes=all_types_and_complex_and(torch.half, torch.bfloat16,
                                          torch.bool))
    def test_binary_op_scalar_with_overlapping_tensors(self, device, dtype,
                                                       op):
        foreach_op, ref = op.method_variant, op.ref
        tensors = [
            torch.ones(1, 1, device=device, dtype=dtype).expand(2, 1, 3)
        ]

        if ref == torch.sub and dtype == torch.bool:
            with self.assertRaisesRegex(RuntimeError,
                                        re.escape(_BOOL_SUB_ERR_MSG)):
                [ref(t, 1) for t in tensors]
            with self.assertRaisesRegex(RuntimeError,
                                        re.escape(_BOOL_SUB_ERR_MSG)):
                foreach_op(tensors, 1)
            return

        expected = [ref(t, 1) for t in tensors]
        res = foreach_op(tensors, 1)
        self.assertEqual(res, expected)

    # note(mkozuki): this test case fails with Meta at least in my local environment.
    # The message was
    # `AssertionError: NotImplementedError("Could not run 'aten::_foreach_add.Scalar' with arguments from the 'Meta' backend.`
    @skipMeta
    @ops(foreach_binary_op_db, allowed_dtypes=[torch.float])
    def test_binary_op_scalar_with_different_tensor_dtypes(
            self, device, dtype, op):
        foreach_op = op.method_variant
        tensors = [
            torch.tensor([1.1], dtype=torch.float, device=device),
            torch.tensor([1], dtype=torch.long, device=device)
        ]
        runtime_error = None
        try:
            foreach_op(tensors, 1)
        except RuntimeError as e:
            runtime_error = e
        self.assertIsNone(runtime_error)

    @ops(foreach_binary_op_db,
         dtypes=all_types_and_complex_and(torch.half, torch.bfloat16,
                                          torch.bool))
    def test_binary_op_list_error_cases(self, device, dtype, op):
        foreach_op, foreach_op_, ref, ref_ = op.method_variant, op.inplace_variant, op.ref, op.ref_inplace
        tensors1 = []
        tensors2 = []

        # Empty lists
        with self.assertRaisesRegex(
                RuntimeError,
                "There were no tensor arguments to this function"):
            foreach_op(tensors1, tensors2)
        with self.assertRaisesRegex(
                RuntimeError,
                "There were no tensor arguments to this function"):
            foreach_op_(tensors1, tensors2)

        # One empty list
        tensors1.append(torch.tensor([1], device=device, dtype=dtype))
        with self.assertRaisesRegex(
                RuntimeError,
                "Tensor list must have same number of elements as scalar list."
        ):
            foreach_op(tensors1, tensors2)
        with self.assertRaisesRegex(
                RuntimeError,
                "Tensor list must have same number of elements as scalar list."
        ):
            foreach_op_(tensors1, tensors2)

        # Lists have different amount of tensors
        tensors2.append(torch.tensor([1], device=device))
        tensors2.append(torch.tensor([1], device=device))
        with self.assertRaisesRegex(
                RuntimeError,
                "Tensor lists must have the same number of tensors, got 1 and 2"
        ):
            foreach_op(tensors1, tensors2)
        with self.assertRaisesRegex(
                RuntimeError,
                "Tensor lists must have the same number of tensors, got 1 and 2"
        ):
            foreach_op_(tensors1, tensors2)

        # Corresponding tensors with different sizes that aren't compatible with broadcast
        # If sizes are different then foreach chooses slow path, thus error messages are expected
        # to be the same as torch regular function.
        tensors1 = [
            torch.zeros(10, 10, device=device, dtype=dtype) for _ in range(10)
        ]
        tensors2 = [
            torch.ones(11, 11, device=device, dtype=dtype) for _ in range(10)
        ]
        try:
            foreach_op(tensors1, tensors2)
        except RuntimeError as e:
            with self.assertRaisesRegex(type(e), re.escape(str(e))):
                [ref(t1, t2) for t1, t2 in zip(tensors1, tensors2)]
        try:
            foreach_op_(tensors1, tensors2)
        except RuntimeError as e:
            with self.assertRaisesRegex(type(e), re.escape(str(e))):
                [ref_(t1, t2) for t1, t2 in zip(tensors1, tensors2)]

        # different devices
        if self.device_type == "cuda" and torch.cuda.device_count() > 1:
            tensor1 = torch.zeros(10, 10, device="cuda:0", dtype=dtype)
            tensor2 = torch.ones(10, 10, device="cuda:1", dtype=dtype)
            if dtype == torch.bool and foreach_op == torch._foreach_sub:
                with self.assertRaisesRegex(RuntimeError,
                                            re.escape(_BOOL_SUB_ERR_MSG)):
                    foreach_op([tensor1], [tensor2])
                with self.assertRaisesRegex(RuntimeError,
                                            re.escape(_BOOL_SUB_ERR_MSG)):
                    foreach_op_([tensor1], [tensor2])
                return
            with self.assertRaisesRegex(
                    RuntimeError,
                    "Expected all tensors to be on the same device"):
                foreach_op([tensor1], [tensor2])
            if dtype in integral_types_and(
                    torch.bool) and foreach_op == torch._foreach_div:
                with self.assertRaisesRegex(RuntimeError, "result type"):
                    foreach_op_([tensor1], [tensor2])
            else:
                with self.assertRaisesRegex(
                        RuntimeError,
                        "Expected all tensors to be on the same device"):
                    foreach_op_([tensor1], [tensor2])

    @skipMeta
    @unittest.skipIf(not torch.cuda.is_available(), "CUDA not found")
    @ops(foreach_binary_op_db,
         dtypes=all_types_and_complex_and(torch.half, torch.bfloat16,
                                          torch.bool))
    def test_binary_op_list_slow_path(self, device, dtype, op):
        # note(mkozuki): why `n_expected_cudaLaunchKernels=0`?
        # In this test, foreach functions don't go through fast path,
        # but as there is only one tensor in each list of tensors,
        # `cudaLaunchKernel` is 1 so ForeachFuncWrapper internal assert fails.
        foreach_op, native_op, foreach_op_, native_op_ = self._get_funcs(
            op, n_expected_cudaLaunchKernels=0)
        # 0-strides
        tensor1 = make_tensor((10, 10), dtype=dtype, device=device)
        tensor2 = make_tensor((1, ), device=device,
                              dtype=dtype).expand_as(tensor1)
        inputs = ([tensor1], [tensor2])
        self._binary_test(dtype,
                          foreach_op,
                          native_op,
                          inputs,
                          is_fastpath=False,
                          is_inplace=False)
        self._binary_test(dtype,
                          foreach_op_,
                          native_op_,
                          inputs,
                          is_fastpath=False,
                          is_inplace=True)

        # different strides
        tensor1 = torch.zeros(10, 10, device=device, dtype=dtype)
        tensor2 = torch.ones(10, 10, device=device, dtype=dtype)
        inputs = ([tensor1], [tensor2.t()])
        self._binary_test(dtype,
                          foreach_op,
                          native_op,
                          inputs,
                          is_fastpath=False,
                          is_inplace=False)
        self._binary_test(dtype,
                          foreach_op_,
                          native_op_,
                          inputs,
                          is_fastpath=False,
                          is_inplace=True)

        # non contiguous
        tensor1 = make_tensor((5, 2, 1, 3),
                              device=device,
                              dtype=dtype,
                              noncontiguous=True)
        tensor2 = make_tensor((5, 2, 1, 3),
                              device=device,
                              dtype=dtype,
                              noncontiguous=True)
        self.assertFalse(tensor1.is_contiguous())
        self.assertFalse(tensor2.is_contiguous())
        inputs = ([tensor1], [tensor2])
        self._binary_test(dtype,
                          foreach_op,
                          native_op,
                          inputs,
                          is_fastpath=False,
                          is_inplace=False)
        self._binary_test(dtype,
                          foreach_op_,
                          native_op_,
                          inputs,
                          is_fastpath=False,
                          is_inplace=True)

        # sliced tensor
        tensor1 = make_tensor((5, 2, 1, 3), device=device, dtype=dtype)
        tensor2 = make_tensor((5, 2, 1, 3 * 7), device=device,
                              dtype=dtype)[:, :, :, ::7]
        inputs = ([tensor1], [tensor2])
        self._binary_test(dtype,
                          foreach_op,
                          native_op,
                          inputs,
                          is_fastpath=False,
                          is_inplace=False)
        self._binary_test(dtype,
                          foreach_op_,
                          native_op_,
                          inputs,
                          is_fastpath=False,
                          is_inplace=True)

    # note: Below three tests (postfixed with `_tensors_on_different_devices`)
    # checks whether foreach works with lists of tensors on different devices
    # but tensors of the same index are on the same device, e.g., ['cuda', 'cpu].
    @onlyCUDA
    @ops(foreach_unary_op_db)
    def test_unary_op_tensors_on_different_devices(self, device, dtype, op):
        method, ref, inplace_method, ref_inplace = self._get_funcs(op, 1)
        # tensors: ['cuda', 'cpu]
        tensors = op.sample_inputs(device, dtype, 2)
        tensors[1] = tensors[1].to('cpu')
        try:
            actual = method((tensors, ), False, False)
        except RuntimeError as e:
            with self.assertRaisesRegex(type(e), str(e)):
                ref((tensors, ))
        else:
            expected = ref((tensors, ))
            self.assertEqual(expected, actual)

        try:
            inplace_method((tensors, ), False, False)
        except RuntimeError as e:
            with self.assertRaisesRegex(type(e), str(e)):
                ref_inplace((tensors, ))
        else:
            self.assertEqual(expected, tensors)

    @onlyCUDA
    @ops(foreach_binary_op_db)
    def test_binary_op_tensors_on_different_devices(self, device, dtype, op):
        # `tensors1`: ['cuda', 'cpu']
        # `tensors2`: ['cuda', 'cpu']
        _cuda_tensors = op.sample_inputs(device, dtype, 2, same_size=True)
        _cpu_tensors = op.sample_inputs('cpu', dtype, 2, same_size=True)
        tensors1, tensors2 = list(
            tensors for tensors in zip(_cuda_tensors, _cpu_tensors))

        foreach_op, foreach_op_ = op.method_variant, op.inplace_variant
        native_op, native_op_ = op.ref, op.ref_inplace
        try:
            actual = foreach_op(tensors1, tensors2)
        except RuntimeError as e:
            with self.assertRaisesRegex(type(e), re.escape(str(e))):
                [native_op(t1, t2) for t1, t2 in zip(tensors1, tensors2)]
        else:
            expected = [
                native_op(t1, t2) for t1, t2 in zip(tensors1, tensors2)
            ]
            self.assertEqual(expected, actual)
        try:
            foreach_op_(tensors1, tensors2)
        except RuntimeError as e:
            with self.assertRaisesRegex(type(e), re.escape(str(e))):
                [native_op_(t1, t2) for t1, t2 in zip(tensors1, tensors2)]
        else:
            self.assertEqual(actual, tensors1)

    @onlyCUDA
    @ops(foreach_pointwise_op_db, allowed_dtypes=floating_types())
    def test_pointwise_op_tensors_on_different_devices(self, device, dtype,
                                                       op):
        # tensors1: ['cuda', 'cpu]
        # tensors2: ['cuda', 'cpu]
        # tensors3: ['cuda', 'cpu]
        _cuda_tensors = op.sample_inputs(device, dtype, 3, same_size=True)
        _cpu_tensors = op.sample_inputs('cpu', dtype, 3, same_size=True)
        tensors1, tensors2, tensors3 = list(
            tensors for tensors in zip(_cuda_tensors, _cpu_tensors))

        foreach_op, foreach_op_, native_op = op.method_variant, op.inplace_variant, op.ref
        actual = foreach_op(tensors1, tensors2, tensors3)
        expected = [native_op(*_cuda_tensors), native_op(*_cpu_tensors)]
        self.assertEqual(expected, actual)

        # note(mkozuki): Limiting dtypes to FP32&FP64, we can safely run inplace ops.
        foreach_op_(tensors1, tensors2, tensors3)
        self.assertEqual(expected, tensors1)

    # note: BFloat16 has the same number of exponent bits as FP32
    # so if squared L2 norm overflows in BF16, then it also overflows in FP32.
    @onlyCUDA
    @ops(foreach_reduce_op_db, allowed_dtypes=(torch.half, torch.bfloat16))
    def test_foreach_l2_large_value_input(self, device, dtype, op):
        ord, N = 2, 10
        max_value = torch.finfo(dtype).max
        scaler = torch.tensor([max_value]).sqrt().to(device=device,
                                                     dtype=dtype)
        inputs = [
            t * scaler for t in op.sample_inputs(
                device, dtype, N, noncontiguous=False, low=1)
        ],
        # make sure that the min. of squared L2 norm value per tensor is greater than the max value of `dtype`.
        self.assertTrue(scaler * scaler * N > max_value)
        fn, ref_fn, *_ = self._get_funcs(op, 3)
        actual = fn(inputs, is_cuda=True, is_fastpath=True, ord=ord)
        expect = ref_fn(inputs, ord=ord)
        if dtype == torch.float16:
            # making sure the reference L2 norm values are in the range of FP16.
            self.assertFalse(any(torch.isinf(e) for e in expect))
        else:
            self.assertTrue(all(torch.isinf(e) for e in expect))
        self.assertEqual(expect, actual, equal_nan=False)
Exemple #4
0
class TestShapeOps(TestCase):

    # TODO: update to work on CUDA, too
    @onlyCPU
    def test_unbind(self, device):
        x = torch.rand(2, 3, 4, 5)
        for dim in range(4):
            res = torch.unbind(x, dim)
            res2 = x.unbind(dim)
            self.assertEqual(x.size(dim), len(res))
            self.assertEqual(x.size(dim), len(res2))
            for i in range(dim):
                self.assertEqual(x.select(dim, i), res[i])
                self.assertEqual(x.select(dim, i), res2[i])

    # TODO: update to work on CUDA, too?
    @onlyCPU
    def test_tolist(self, device):
        list0D = []
        tensor0D = torch.tensor(list0D)
        self.assertEqual(tensor0D.tolist(), list0D)

        table1D = [1., 2., 3.]
        tensor1D = torch.tensor(table1D)
        storage = torch.Storage(table1D)
        self.assertEqual(tensor1D.tolist(), table1D)
        self.assertEqual(storage.tolist(), table1D)
        self.assertEqual(tensor1D.tolist(), table1D)
        self.assertEqual(storage.tolist(), table1D)

        table2D = [[1, 2], [3, 4]]
        tensor2D = torch.tensor(table2D)
        self.assertEqual(tensor2D.tolist(), table2D)

        tensor3D = torch.tensor([[[1, 2], [3, 4]], [[5, 6], [7, 8]]])
        tensorNonContig = tensor3D.select(1, 1)
        self.assertFalse(tensorNonContig.is_contiguous())
        self.assertEqual(tensorNonContig.tolist(), [[3, 4], [7, 8]])

    @dtypes(torch.int64, torch.float, torch.complex128)
    def test_movedim_invalid(self, device, dtype):
        shape = self._rand_shape(4, min_size=5, max_size=10)
        x = _generate_input(shape, dtype, device, False)

        for fn in [torch.movedim, torch.moveaxis]:
            # Invalid `source` and `destination` dimension
            with self.assertRaisesRegex(IndexError, "Dimension out of range"):
                fn(x, 5, 0)

            with self.assertRaisesRegex(IndexError, "Dimension out of range"):
                fn(x, 0, 5)

            # Mismatch in size of `source` and `destination`
            with self.assertRaisesRegex(
                    RuntimeError,
                    "movedim: Invalid source or destination dims:"):
                fn(x, (1, 0), (0, ))

            with self.assertRaisesRegex(RuntimeError,
                                        "movedim: repeated dim in `source`"):
                fn(x, (0, 0), (0, 1))

            with self.assertRaisesRegex(RuntimeError,
                                        "movedim: repeated dim in `source`"):
                fn(x, (0, 1, 0), (0, 1, 2))

            with self.assertRaisesRegex(
                    RuntimeError, "movedim: repeated dim in `destination`"):
                fn(x, (0, 1), (1, 1))

            with self.assertRaisesRegex(
                    RuntimeError, "movedim: repeated dim in `destination`"):
                fn(x, (0, 1, 2), (1, 0, 1))

    @dtypes(torch.int64, torch.float, torch.complex128)
    def test_movedim(self, device, dtype):
        for fn in [torch.moveaxis, torch.movedim]:
            for nd in range(5):
                shape = self._rand_shape(nd, min_size=5, max_size=10)
                x = _generate_input(shape, dtype, device, with_extremal=False)
                for random_negative in [True, False]:
                    for src_dim, dst_dim in permutations(range(nd), r=2):
                        random_prob = random.random()

                        if random_negative and random_prob > 0.66:
                            src_dim = src_dim - nd
                        elif random_negative and random_prob > 0.33:
                            dst_dim = dst_dim - nd
                        elif random_negative:
                            src_dim = src_dim - nd
                            dst_dim = dst_dim - nd

                        # Integer `source` and `destination`
                        torch_fn = partial(fn,
                                           source=src_dim,
                                           destination=dst_dim)
                        np_fn = partial(np.moveaxis,
                                        source=src_dim,
                                        destination=dst_dim)
                        self.compare_with_numpy(torch_fn,
                                                np_fn,
                                                x,
                                                device=None,
                                                dtype=None)

                    if nd == 0:
                        continue

                    def make_index_negative(sequence, idx):
                        sequence = list(sequence)
                        sequence[random_idx] = sequence[random_idx] - nd
                        return tuple(src_sequence)

                    for src_sequence in permutations(range(nd),
                                                     r=random.randint(1, nd)):
                        # Sequence `source` and `destination`
                        dst_sequence = tuple(
                            random.sample(range(nd), len(src_sequence)))

                        # Randomly change a dim to a negative dim representation of itself.
                        random_prob = random.random()
                        if random_negative and random_prob > 0.66:
                            random_idx = random.randint(
                                0,
                                len(src_sequence) - 1)
                            src_sequence = make_index_negative(
                                src_sequence, random_idx)
                        elif random_negative and random_prob > 0.33:
                            random_idx = random.randint(
                                0,
                                len(src_sequence) - 1)
                            dst_sequence = make_index_negative(
                                dst_sequence, random_idx)
                        elif random_negative:
                            random_idx = random.randint(
                                0,
                                len(src_sequence) - 1)
                            dst_sequence = make_index_negative(
                                dst_sequence, random_idx)
                            random_idx = random.randint(
                                0,
                                len(src_sequence) - 1)
                            src_sequence = make_index_negative(
                                src_sequence, random_idx)

                        torch_fn = partial(fn,
                                           source=src_sequence,
                                           destination=dst_sequence)
                        np_fn = partial(np.moveaxis,
                                        source=src_sequence,
                                        destination=dst_sequence)
                        self.compare_with_numpy(torch_fn,
                                                np_fn,
                                                x,
                                                device=None,
                                                dtype=None)

            # Move dim to same position
            x = torch.randn(2, 3, 5, 7, 11)
            torch_fn = partial(fn, source=(0, 1), destination=(0, 1))
            np_fn = partial(np.moveaxis, source=(0, 1), destination=(0, 1))
            self.compare_with_numpy(torch_fn,
                                    np_fn,
                                    x,
                                    device=None,
                                    dtype=None)

            torch_fn = partial(fn, source=1, destination=1)
            np_fn = partial(np.moveaxis, source=1, destination=1)
            self.compare_with_numpy(torch_fn,
                                    np_fn,
                                    x,
                                    device=None,
                                    dtype=None)

            # Empty Sequence
            torch_fn = partial(fn, source=(), destination=())
            np_fn = partial(np.moveaxis, source=(), destination=())
            self.compare_with_numpy(torch_fn,
                                    np_fn,
                                    x,
                                    device=None,
                                    dtype=None)

    @dtypes(torch.float, torch.bool)
    def test_diag(self, device, dtype):
        if dtype is torch.bool:
            x = torch.rand(100, 100, device=device) >= 0.5
        else:
            x = torch.rand(100, 100, dtype=dtype, device=device)

        res1 = torch.diag(x)
        res2 = torch.tensor((), dtype=dtype, device=device)
        torch.diag(x, out=res2)
        self.assertEqual(res1, res2)

    def test_diagonal(self, device):
        x = torch.randn((100, 100), device=device)
        result = torch.diagonal(x)
        expected = torch.diag(x)
        self.assertEqual(result, expected)

        x = torch.randn((100, 100), device=device)
        result = torch.diagonal(x, 17)
        expected = torch.diag(x, 17)
        self.assertEqual(result, expected)

    @onlyCPU
    @dtypes(torch.float)
    def test_diagonal_multidim(self, device, dtype):
        x = torch.randn(10, 11, 12, 13, dtype=dtype, device=device)
        xn = x.numpy()
        for args in [(2, 2, 3), (2, ), (-2, 1, 2), (0, -2, -1)]:
            result = torch.diagonal(x, *args)
            expected = xn.diagonal(*args)
            self.assertEqual(expected.shape, result.shape)
            self.assertEqual(expected, result)
        # test non-continguous
        xp = x.permute(1, 2, 3, 0)
        result = torch.diagonal(xp, 0, -2, -1)
        expected = xp.numpy().diagonal(0, -2, -1)
        self.assertEqual(expected.shape, result.shape)
        self.assertEqual(expected, result)

    @onlyNativeDeviceTypes
    @dtypes(*all_types())
    @dtypesIfCUDA(*all_types_and(torch.half))
    def test_trace(self, device, dtype):
        def test(shape):
            tensor = make_tensor(shape,
                                 dtype=dtype,
                                 device=device,
                                 low=-9,
                                 high=9)
            expected_dtype = tensor.sum().dtype
            expected_dtype = torch_to_numpy_dtype_dict[expected_dtype]

            result = np.trace(tensor.cpu().numpy(), dtype=expected_dtype)
            expected = torch.tensor(result, device=device)
            self.assertEqual(tensor.trace(), expected)

        shapes = (
            [10, 1],
            [1, 10],
            [100, 100],
            [20, 100],
            [100, 20],
        )
        for shape in shapes:
            test(shape)

    def generate_clamp_baseline(self, device, dtype, *, min_vals, max_vals,
                                with_nans):
        """
        Creates a random tensor for a given device and dtype, and computes the expected clamped
        values given the min_vals and/or max_vals.
        If with_nans is provided, then some values are randomly set to nan.
        """
        X = torch.rand(100,
                       device=device).mul(50).add(-25)  # uniform in [-25, 25]
        X = X.to(dtype)
        if with_nans:
            mask = torch.randint(0,
                                 2,
                                 X.shape,
                                 dtype=torch.bool,
                                 device=device)
            X[mask] = nan

        if isinstance(min_vals, torch.Tensor):
            min_vals = min_vals.cpu().numpy()

        if isinstance(max_vals, torch.Tensor):
            max_vals = max_vals.cpu().numpy()

        # Use NumPy implementation as reference
        X_clamped = torch.tensor(np.clip(X.cpu().numpy(),
                                         a_min=min_vals,
                                         a_max=max_vals),
                                 device=device)
        return X, X_clamped

    # Tests clamp and its alias, clip
    @dtypes(torch.int64, torch.float32)
    def test_clamp(self, device, dtype):
        op_list = (torch.clamp, torch.Tensor.clamp, torch.Tensor.clamp_,
                   torch.clip, torch.Tensor.clip, torch.Tensor.clip_)

        # min/max argument product
        args = product((-10, None), (10, None))

        for op in op_list:
            for min_val, max_val in args:
                if min_val is None and max_val is None:
                    continue

                X, Y_expected = self.generate_clamp_baseline(device,
                                                             dtype,
                                                             min_vals=min_val,
                                                             max_vals=max_val,
                                                             with_nans=False)

                # Test op
                X1 = X.clone()  # So that the in-place ops do not change X
                Y_actual = op(X1, min_val, max_val)
                self.assertEqual(Y_expected, Y_actual)

                # Test op-out behavior (out does not exist for method versions)
                if op in (torch.clamp, torch.clip):
                    Y_out = torch.empty_like(X)
                    op(X, min=min_val, max=max_val, out=Y_out)
                    self.assertEqual(Y_expected, Y_out)

    def test_clamp_propagates_nans(self, device):
        op_list = (torch.clamp, torch.Tensor.clamp, torch.Tensor.clamp_,
                   torch.clip, torch.Tensor.clip, torch.Tensor.clip_)

        # min/max argument product
        args = product((-10, None), (10, None))

        for op in op_list:
            for min_val, max_val in args:
                if min_val is None and max_val is None:
                    continue

                X, Y_expected = self.generate_clamp_baseline(device,
                                                             torch.float,
                                                             min_vals=min_val,
                                                             max_vals=max_val,
                                                             with_nans=True)
                Y_expected = torch.isnan(Y_expected)

                # Test op
                X1 = X.clone()  # So that the in-place ops do not change X
                Y_actual = op(X1, min_val, max_val)
                self.assertEqual(Y_expected, torch.isnan(Y_actual))

                # Test op-out behavior (out does not exist for method versions)
                if op in (torch.clamp, torch.clip):
                    Y_out = torch.empty_like(X)
                    op(X, min_val, max_val, out=Y_out)
                    self.assertEqual(Y_expected, torch.isnan(Y_out))

    def test_clamp_raises_arg_errors(self, device):
        X = torch.randn(100, dtype=torch.float, device=device)
        error_msg = 'At least one of \'min\' or \'max\' must not be None'
        with self.assertRaisesRegex(RuntimeError, error_msg):
            X.clamp()
        with self.assertRaisesRegex(RuntimeError, error_msg):
            X.clamp_()
        with self.assertRaisesRegex(RuntimeError, error_msg):
            torch.clamp(X)

    @dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16))
    def test_flip(self, device, dtype):
        make_from_data = partial(torch.tensor, device=device, dtype=dtype)
        make_from_size = partial(make_tensor, device=device, dtype=dtype)

        def test_flip_impl(input_t, dims, output_t):
            def all_t():
                yield input_t, output_t
                if dtype is torch.float:
                    # We generate quantized versions as well
                    for qdtype in (torch.quint8, torch.qint8, torch.qint32):
                        qinput_t = torch.quantize_per_tensor(
                            input_t, 0.1, 5, qdtype)
                        qoutput_t = torch.quantize_per_tensor(
                            output_t, 0.1, 5, qdtype)
                        yield qinput_t, qoutput_t

            for in_t, out_t in all_t():
                self.assertEqual(in_t.flip(dims), out_t)
                n = in_t.ndim
                if not isinstance(dims, tuple):
                    # Wrap dim
                    self.assertEqual(in_t.flip(-n + dims), out_t)
                else:
                    # Permute dimensions
                    for p_dims in permutations(dims):
                        self.assertEqual(in_t.flip(p_dims), out_t)
                        if len(p_dims) > 0:
                            # Wrap 1st dim
                            self.assertEqual(
                                in_t.flip((-n + p_dims[0], ) + p_dims[1:]),
                                out_t)

        def gen_data():
            # Basic tests
            data = make_from_data([1, 2, 3, 4, 5, 6, 7, 8]).view(2, 2, 2)
            nonctg = make_from_size((2, 2, 2), noncontiguous=True).copy_(data)

            dims_result = ((0, make_from_data([5, 6, 7, 8, 1, 2, 3,
                                               4]).view(2, 2, 2)),
                           (1, make_from_data([3, 4, 1, 2, 7, 8, 5,
                                               6]).view(2, 2, 2)),
                           (2, make_from_data([2, 1, 4, 3, 6, 5, 8,
                                               7]).view(2, 2, 2)),
                           ((0, 1), make_from_data([7, 8, 5, 6, 3, 4, 1,
                                                    2]).view(2, 2, 2)),
                           ((0, 1, 2), make_from_data([8, 7, 6, 5, 4, 3, 2,
                                                       1]).view(2, 2, 2)))
            for in_tensor, (dims, out_tensor) in product((data, nonctg),
                                                         dims_result):
                yield in_tensor, dims, out_tensor

            # Expanded
            in_t = make_from_data([1, 2, 3]).view(3, 1).expand(3, 2)
            dims = 0
            out_t = make_from_data([3, 3, 2, 2, 1, 1]).view(3, 2)
            yield in_t, dims, out_t
            # Noop on expanded dimension
            yield in_t, 1, in_t

            # Transposed
            in_t = make_from_data([1, 2, 3, 4, 5, 6, 7,
                                   8]).view(2, 2, 2).transpose(0, 1)
            dims = (0, 1, 2)
            out_t = make_from_data([8, 7, 4, 3, 6, 5, 2, 1]).view(2, 2, 2)
            yield in_t, dims, out_t

            # Rectangular case
            in_t = make_from_data([1, 2, 3, 4, 5, 6]).view(2, 3)
            dims = 0
            out_t = make_from_data([[4, 5, 6], [1, 2, 3]])
            yield in_t, dims, out_t
            dims = 1
            out_t = make_from_data([[3, 2, 1], [6, 5, 4]])
            yield in_t, dims, out_t

            # Noops (edge cases)

            # Size 0
            in_t = make_from_data(())
            yield in_t, 0, in_t
            yield in_t, (), in_t

            # dims = ()
            in_t = make_from_size((3, 2, 1))
            yield in_t, (), in_t

            # Zero elements, non-zero size
            in_t = make_from_size((3, 0, 2))
            for i in range(in_t.ndim):
                yield in_t, i, in_t

            # Size 1
            in_t = make_from_size(())
            yield in_t, 0, in_t
            in_t = make_from_size((1, ))
            yield in_t, 0, in_t

        for in_tensor, dims, out_tensor in gen_data():
            test_flip_impl(in_tensor, dims, out_tensor)

        # test for shape
        size = [2, 3, 4]
        data = make_from_size(size)
        possible_dims = range(len(size))
        test_dims = chain(combinations(possible_dims, 1),
                          combinations(possible_dims, 2))

        for dims in test_dims:
            self.assertEqual(size, list(data.flip(dims).size()))

    @dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16))
    def test_flip_errors(self, device, dtype):
        make_arg = partial(make_tensor, dtype=dtype, device=device)
        data = make_arg((2, 2, 2))

        # not allow flip on the same dim more than once
        self.assertRaises(RuntimeError, lambda: data.flip(0, 1, 1))
        # not allow empty list as input
        self.assertRaises(TypeError, lambda: data.flip())

        # not allow dim > max dim
        self.assertRaises(IndexError, lambda: data.flip(0, 1, 2, 3))
        self.assertRaises(IndexError, lambda: data.flip(3))

    def _rand_shape(self, dim, min_size, max_size):
        return tuple(torch.randint(min_size, max_size + 1, (dim, )))

    @dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16))
    def test_flip_numpy(self, device, dtype):
        make_arg = partial(make_tensor, dtype=dtype, device=device)

        for ndim in [3, 4]:
            shape = self._rand_shape(ndim, 5, 10)
            data = make_arg(shape)

            # Axis to sample for given shape.
            for i in range(1, ndim + 1):
                # Check all combinations of `i` axis.
                for flip_dim in combinations(range(ndim), i):
                    torch_fn = partial(torch.flip, dims=flip_dim)
                    np_fn = partial(np.flip, axis=flip_dim)
                    self.compare_with_numpy(torch_fn, np_fn, data)

    @onlyCUDA  # CPU is too slow
    @largeTensorTest('17GB'
                     )  # 4 tensors of 4GB (in, out) x (torch, numpy) + 1GB
    @largeTensorTest(
        "81GB",
        "cpu")  # even for CUDA test, sufficient system memory is required
    def test_flip_large_tensor(self, device):
        t_in = torch.empty(2**32 + 1, dtype=torch.uint8).random_()
        torch_fn = partial(torch.flip, dims=(0, ))
        np_fn = partial(np.flip, axis=0)
        self.compare_with_numpy(torch_fn, np_fn, t_in)
        del t_in

    def _test_fliplr_flipud(self, torch_fn, np_fn, min_dim, max_dim, device,
                            dtype):
        for dim in range(min_dim, max_dim + 1):
            shape = self._rand_shape(dim, 5, 10)
            # Randomly scale the input
            if dtype.is_floating_point or dtype.is_complex:
                data = torch.randn(*shape, device=device, dtype=dtype)
            else:
                data = torch.randint(0, 10, shape, device=device, dtype=dtype)
            self.compare_with_numpy(torch_fn, np_fn, data)

    @dtypes(torch.int64, torch.double, torch.cdouble)
    def test_fliplr(self, device, dtype):
        self._test_fliplr_flipud(torch.fliplr, np.fliplr, 2, 4, device, dtype)

    @dtypes(torch.int64, torch.double, torch.cdouble)
    def test_fliplr_invalid(self, device, dtype):
        x = torch.randn(42).to(dtype)
        with self.assertRaisesRegex(RuntimeError, "Input must be >= 2-d."):
            torch.fliplr(x)
        with self.assertRaisesRegex(RuntimeError, "Input must be >= 2-d."):
            torch.fliplr(torch.tensor(42, device=device, dtype=dtype))

    @dtypes(torch.int64, torch.double, torch.cdouble)
    def test_flipud(self, device, dtype):
        self._test_fliplr_flipud(torch.flipud, np.flipud, 1, 4, device, dtype)

    @dtypes(torch.int64, torch.double, torch.cdouble)
    def test_flipud_invalid(self, device, dtype):
        with self.assertRaisesRegex(RuntimeError, "Input must be >= 1-d."):
            torch.flipud(torch.tensor(42, device=device, dtype=dtype))

    def test_rot90(self, device):
        data = torch.arange(1, 5, device=device).view(2, 2)
        self.assertEqual(
            torch.tensor([1, 2, 3, 4]).view(2, 2), data.rot90(0, [0, 1]))
        self.assertEqual(
            torch.tensor([2, 4, 1, 3]).view(2, 2), data.rot90(1, [0, 1]))
        self.assertEqual(
            torch.tensor([4, 3, 2, 1]).view(2, 2), data.rot90(2, [0, 1]))
        self.assertEqual(
            torch.tensor([3, 1, 4, 2]).view(2, 2), data.rot90(3, [0, 1]))

        # test for default args k=1, dims=[0, 1]
        self.assertEqual(data.rot90(), data.rot90(1, [0, 1]))

        # test for reversed order of dims
        self.assertEqual(data.rot90(3, [0, 1]), data.rot90(1, [1, 0]))

        # test for modulo of k
        self.assertEqual(data.rot90(5, [0, 1]), data.rot90(1, [0, 1]))
        self.assertEqual(data.rot90(3, [0, 1]), data.rot90(-1, [0, 1]))
        self.assertEqual(data.rot90(-5, [0, 1]), data.rot90(-1, [0, 1]))

        # test for dims out-of-range error
        self.assertRaises(RuntimeError, lambda: data.rot90(1, [0, -3]))
        self.assertRaises(RuntimeError, lambda: data.rot90(1, [0, 2]))

        # test tensor with more than 2D
        data = torch.arange(1, 9, device=device).view(2, 2, 2)
        self.assertEqual(
            torch.tensor([2, 4, 1, 3, 6, 8, 5, 7]).view(2, 2, 2),
            data.rot90(1, [1, 2]))
        self.assertEqual(data.rot90(1, [1, -1]), data.rot90(1, [1, 2]))

        # test for errors
        self.assertRaises(RuntimeError, lambda: data.rot90(1, [0, 3]))
        self.assertRaises(RuntimeError, lambda: data.rot90(1, [1, 1]))
        self.assertRaises(RuntimeError, lambda: data.rot90(1, [0, 1, 2]))
        self.assertRaises(RuntimeError, lambda: data.rot90(1, [0]))

    @dtypes(torch.cfloat, torch.cdouble)
    def test_complex_rot90(self, device, dtype):
        shape = self._rand_shape(random.randint(2, 4), 5, 10)
        for rot_times in range(4):
            data = torch.randn(*shape, device=device, dtype=dtype)
            torch_fn = partial(torch.rot90, k=rot_times, dims=[0, 1])
            np_fn = partial(np.rot90, k=rot_times, axes=[0, 1])
            self.compare_with_numpy(torch_fn, np_fn, data)

    # TODO: update once warning flag is available to always trigger ONCE warnings
    # Ensures nonzero does not throw a warning, even when the as_tuple argument
    #   is not provided
    def test_nonzero_no_warning(self, device):
        t = torch.randn((2, 2), device=device)
        with warnings.catch_warnings(record=True) as w:
            warnings.simplefilter("always")
            torch.nonzero(t)
            t.nonzero()
            self.assertEqual(len(w), 0)

    @dtypes(*all_types_and(torch.half, torch.bool, torch.bfloat16))
    def test_nonzero(self, device, dtype):

        shapes = [
            torch.Size((12, )),
            torch.Size((12, 1)),
            torch.Size((1, 12)),
            torch.Size((6, 2)),
            torch.Size((3, 2, 2)),
            torch.Size((5, 5, 5)),
        ]

        def gen_nontrivial_input(shape, dtype, device):
            if dtype != torch.bfloat16:
                return torch.randint(2, shape, device=device, dtype=dtype)
            else:
                # windows does not work for bfloat16 randing
                return torch.randint(2,
                                     shape,
                                     device=device,
                                     dtype=torch.float).to(dtype)

        for shape in shapes:
            tensor = gen_nontrivial_input(shape, dtype, device)
            dst1 = torch.nonzero(tensor, as_tuple=False)
            dst2 = tensor.nonzero(as_tuple=False)
            dst3 = torch.empty([], dtype=torch.long, device=device)
            torch.nonzero(tensor, out=dst3)
            if self.device_type != 'xla':
                # xla does not raise runtime error
                self.assertRaisesRegex(
                    RuntimeError, "scalar type Long", lambda: torch.nonzero(
                        tensor,
                        out=torch.empty([], dtype=torch.float, device=device)))
            if self.device_type == 'cuda':
                self.assertRaisesRegex(
                    RuntimeError, "on the same device", lambda: torch.nonzero(
                        tensor, out=torch.empty([], dtype=torch.long)))
            np_array = tensor.cpu().numpy(
            ) if dtype != torch.bfloat16 else tensor.float().cpu().numpy()
            np_result = torch.from_numpy(np.stack(np_array.nonzero())).t()
            self.assertEqual(dst1.cpu(), np_result, atol=0, rtol=0)
            self.assertEqual(dst2.cpu(), np_result, atol=0, rtol=0)
            self.assertEqual(dst3.cpu(), np_result, atol=0, rtol=0)
            tup1 = torch.nonzero(tensor, as_tuple=True)
            tup2 = tensor.nonzero(as_tuple=True)
            tup1 = torch.stack(tup1).t().cpu()
            tup2 = torch.stack(tup2).t().cpu()
            self.assertEqual(tup1, np_result, atol=0, rtol=0)
            self.assertEqual(tup2, np_result, atol=0, rtol=0)

    def test_nonzero_astuple_out(self, device):
        t = torch.randn((3, 3, 3), device=device)
        out = torch.empty_like(t, dtype=torch.long)

        with self.assertRaises(RuntimeError):
            torch.nonzero(t, as_tuple=True, out=out)

        self.assertEqual(torch.nonzero(t, as_tuple=False, out=out),
                         torch.nonzero(t, out=out))

        # Verifies that JIT script cannot handle the as_tuple kwarg
        # See Issue https://github.com/pytorch/pytorch/issues/45499.
        def _foo(t):
            tuple_result = torch.nonzero(t, as_tuple=True)
            nontuple_result = torch.nonzero(t, as_tuple=False)
            out = torch.empty_like(nontuple_result)
            torch.nonzero(t, as_tuple=False, out=out)
            return tuple_result, nontuple_result, out

        with self.assertRaises(RuntimeError):
            scripted_foo = torch.jit.script(_foo)

        # Verifies that JIT tracing works fine
        traced_foo = torch.jit.trace(_foo, t)
        traced_tuple, traced_nontuple, traced_out = traced_foo(t)
        expected_tuple = torch.nonzero(t, as_tuple=True)
        expected_nontuple = torch.nonzero(t)

        self.assertEqual(traced_tuple, expected_tuple)
        self.assertEqual(traced_nontuple, expected_nontuple)
        self.assertEqual(traced_out, expected_nontuple)

    @onlyNativeDeviceTypes
    def test_nonzero_discontiguous(self, device):
        shape = (4, 4)
        tensor = torch.randint(2, shape, device=device)
        tensor_nc = torch.empty(shape[0], shape[1] * 2,
                                device=device)[:, ::2].copy_(tensor)
        dst1 = tensor.nonzero(as_tuple=False)
        dst2 = tensor_nc.nonzero(as_tuple=False)
        self.assertEqual(dst1, dst2, atol=0, rtol=0)
        dst3 = torch.empty_like(dst1)
        data_ptr = dst3.data_ptr()
        # expect dst3 storage to be reused
        torch.nonzero(tensor, out=dst3)
        self.assertEqual(data_ptr, dst3.data_ptr())
        self.assertEqual(dst1, dst3, atol=0, rtol=0)
        # discontiguous out
        dst4 = torch.empty(dst1.size(0),
                           dst1.size(1) * 2,
                           dtype=torch.long,
                           device=device)[:, ::2]
        data_ptr = dst4.data_ptr()
        strides = dst4.stride()
        torch.nonzero(tensor, out=dst4)
        self.assertEqual(data_ptr, dst4.data_ptr())
        self.assertEqual(dst1, dst4, atol=0, rtol=0)
        self.assertEqual(strides, dst4.stride())

    def test_nonzero_non_diff(self, device):
        x = torch.randn(10, requires_grad=True)
        nz = x.nonzero()
        self.assertFalse(nz.requires_grad)
Exemple #5
0
                        device=device,
                        low=low,
                        requires_grad=requires_grad)),
    )


op_db: List[OpInfo] = [
    UnaryUfuncInfo(
        "special.i0e",
        aten_name="special_i0e",
        ref=scipy.special.i0e if TEST_SCIPY else None,
        decorators=(precisionOverride({
            torch.bfloat16: 3e-1,
            torch.float16: 3e-1
        }), ),
        dtypes=all_types_and(torch.bool, torch.bfloat16),
        dtypesIfCUDA=all_types_and(torch.bool, torch.half, torch.bfloat16),
        backward_dtypes=floating_types(),
        sample_inputs_func=sample_inputs_i0_i1,
        supports_forward_ad=True,
        supports_fwgrad_bwgrad=True,
    ),
    UnaryUfuncInfo(
        "special.i1",
        aten_name="special_i1",
        ref=np_unary_ufunc_integer_promotion_wrapper(scipy.special.i1)
        if TEST_SCIPY else None,
        dtypes=all_types_and(torch.bool),
        dtypesIfCUDA=all_types_and(torch.bool),
        sample_inputs_func=sample_inputs_i0_i1,
        decorators=(DecorateInfo(
Exemple #6
0
             "test_normalize_operator_exhaustive",
         ),
         # NotSupportedError: Compiled functions can't ... use keyword-only arguments with defaults
         DecorateInfo(
             unittest.skip("Skipped!"), "TestJit", "test_variant_consistency_jit"
         ),
     ),
     # Can reuse the same inputs; dim is required in both
     sample_inputs_func=sample_inputs_masked_cumops,
     gradcheck_wrapper=gradcheck_wrapper_masked_operation,
 ),
 ReductionOpInfo(
     "_masked.amax",
     nan_policy="propagate",
     supports_out=False,
     dtypes=all_types_and(torch.float16, torch.bfloat16),
     supports_sparse=True,
     supports_forward_ad=True,
     supports_fwgrad_bwgrad=True,
     supports_sparse_csr=True,
     ref=reference_reduction_numpy(np.amax),
     skips=(
         DecorateInfo(
             unittest.expectedFailure,
             "TestNormalizeOperators",
             "test_normalize_operator_exhaustive",
         ),
         # FIXME: amax reduces all dimensions when dim=[]
         DecorateInfo(unittest.expectedFailure, "TestReductions", "test_dim_empty"),
         DecorateInfo(
             unittest.expectedFailure, "TestReductions", "test_dim_empty_keepdim"
Exemple #7
0
     ],
     skips=(
         # Issue with conj and torch dispatch, see https://github.com/pytorch/pytorch/issues/82479
         DecorateInfo(
             unittest.skip("Skipped!"),
             "TestSchemaCheckModeOpInfo",
             "test_schema_correctness",
         ), ),
 ),
 SpectralFuncInfo(
     "fft.rfft",
     aten_name="fft_rfft",
     decomp_aten_name="_fft_r2c",
     ref=np.fft.rfft,
     ndimensional=SpectralFuncType.OneD,
     dtypes=all_types_and(torch.bool),
     # rocFFT doesn't support Half/Complex Half Precision FFT
     # CUDA supports Half/ComplexHalf Precision FFT only on SM53 or later archs
     dtypesIfCUDA=all_types_and(
         torch.bool,
         *(() if (TEST_WITH_ROCM or not SM53OrLater) else (torch.half, ))),
     # https://github.com/pytorch/pytorch/issues/80411
     gradcheck_fast_mode=True,
     supports_forward_ad=True,
     supports_fwgrad_bwgrad=True,
     check_batched_grad=False,
     skips=(),
     check_batched_gradgrad=False,
 ),
 SpectralFuncInfo(
     "fft.rfft2",