def test_unsafe_flag(self, device, dtype): length_type = dtype lengths = torch.tensor([0, 2, 3, 0], device=device, dtype=length_type) data = torch.arange(6, dtype=torch.float, device=device) # test for error on 1-D lenghts with self.assertRaisesRegex(RuntimeError, "Expected all rows of lengths along axis"): torch.segment_reduce(data, 'sum', lengths=lengths, axis=0, unsafe=False) # test for error on multi-D lengths nd_lengths = torch.tensor([[0, 3, 3, 0], [2, 3, 0, 0]], dtype=length_type, device=device) nd_data = torch.arange(12, dtype=torch.float, device=device).reshape(2, 6) with self.assertRaisesRegex(RuntimeError, "Expected all rows of lengths along axis"): torch.segment_reduce(nd_data, 'sum', lengths=nd_lengths, axis=1, unsafe=False)
def test_max_simple_1d(self, device, dtype): lengths = torch.tensor([1, 2, 3], device=device) data = torch.tensor([1, float("nan"), 3, 4, 5, 6], device=device, dtype=dtype) expected_result = torch.tensor([1, float("nan"), 6], device=device, dtype=dtype) actual_result = torch.segment_reduce(data=data, reduce="max", lengths=lengths, axis=0, unsafe=False) self.assertEqual(expected_result, actual_result, rtol=1e-03, atol=1e-05, equal_nan=True) actual_result = torch.segment_reduce(data=data, reduce="max", lengths=lengths, axis=-1, unsafe=False) self.assertEqual(expected_result, actual_result, rtol=1e-03, atol=1e-05, equal_nan=True)
def _test_max_simple_1d(self, device, dtype, unsafe, axis): lengths = torch.tensor([1, 2, 3], device=device) data = torch.tensor( [1, float("nan"), 3, 4, 5, 5], device=device, dtype=dtype, requires_grad=True, ) expected_result = torch.tensor([1, float("nan"), 5], device=device, dtype=dtype) actual_result = torch.segment_reduce(data=data, reduce="max", lengths=lengths, axis=axis, unsafe=unsafe) self.assertEqual(expected_result, actual_result, rtol=1e-03, atol=1e-05, equal_nan=True) # Backward is only supported for cpu tensors for now. Return early if cuda if data.is_cuda: return # Test backward expected_grad = torch.tensor([1, 1, 0, 0, 0.5, 0.5], device=device, dtype=dtype) actual_result.sum().backward() self.assertEqual(expected_grad, data.grad, rtol=1e-03, atol=1e-05, equal_nan=True) # gradcheck does not work well with bfloat16 or fp16 cpu types # also there is small numerical difference with fp32 if dtype not in [torch.half, torch.bfloat16, torch.float]: # gradcheck does not like "nan" input data = torch.tensor( [1, 10, 3, 4, 5, 5], device=device, dtype=dtype, requires_grad=True, ) self.assertTrue( gradcheck( lambda x: torch.segment_reduce(data=x, reduce="max", lengths=lengths, axis=axis, unsafe=unsafe), (data, ), ))
def fn(x): initial = 1 # supply initial values to prevent gradcheck from failing for 0 length segments # where nan/inf are reduction identities that produce nans when calculating the numerical jacobian if reduce == 'min': initial = 1000 elif reduce == 'max': initial = -1000 return torch.segment_reduce(x, reduce, lengths=lengths, axis=dim, unsafe=True, initial=initial)
def fn(x, mode='lengths'): initial = 1 # supply initial values to prevent gradcheck from failing for 0 length segments # where nan/inf are reduction identities that produce nans when calculating the numerical jacobian if reduce == 'min': initial = 1000 elif reduce == 'max': initial = -1000 segment_reduce_args = {x, reduce} segment_reduce_kwargs = dict(axis=dim, unsafe=True, initial=initial) if mode == 'lengths': segment_reduce_kwargs[mode] = lengths elif mode == 'offsets': segment_reduce_kwargs[mode] = indptr return torch.segment_reduce(*segment_reduce_args, **segment_reduce_kwargs)
def _test_common( self, reduction, device, dtype, unsafe, axis, initial_value, data_arr, lengths_arr, expected_arr, expected_grad_arr, check_backward, lengths_dtype=torch.int, ): lengths = torch.tensor(lengths_arr, device=device, dtype=lengths_dtype) data = torch.tensor( data_arr, device=device, dtype=dtype, requires_grad=True, ) expected_result = torch.tensor(expected_arr, device=device, dtype=dtype) expected_grad = torch.tensor(expected_grad_arr, device=device, dtype=dtype) actual_result = torch.segment_reduce( data=data, reduce=reduction, lengths=lengths, axis=axis, unsafe=unsafe, initial=initial_value, ) self.assertEqual(expected_result, actual_result, rtol=1e-02, atol=1e-05, equal_nan=True) if not check_backward: return # Test backward actual_result.sum().backward() self.assertEqual(expected_grad, data.grad, rtol=1e-02, atol=1e-05, equal_nan=True) # gradcheck does not work well with bfloat16 or fp16 cpu types # also there is small numerical difference with fp32 if dtype not in [torch.half, torch.bfloat16, torch.float]: # gradcheck does not like "nan" input, setting to random 10 d_non_nan = np.nan_to_num(data_arr, nan=10) data = torch.tensor( # [10 if v == float("nan") else v for v in data], d_non_nan, device=device, dtype=dtype, requires_grad=True, ) self.assertTrue( gradcheck( lambda x: torch.segment_reduce( data=x, reduce=reduction, lengths=lengths, axis=axis, unsafe=unsafe, initial=initial_value, ), (data, ), ))
def _test_common( self, reduction, device, dtype, unsafe, axis, initial_value, data_arr, lengths_arr, expected_arr, expected_grad_arr, check_backward, lengths_dtype=torch.int, ): lengths = torch.tensor(lengths_arr, device=device, dtype=lengths_dtype) # generate offsets from lengths zeros_shape = list(lengths.shape) zeros_shape[-1] = 1 offsets = torch.cat((lengths.new_zeros(zeros_shape), lengths), -1).cumsum_(-1) data = torch.tensor( data_arr, device=device, dtype=dtype, requires_grad=True, ) expected_result = torch.tensor(expected_arr, device=device, dtype=dtype) expected_grad = torch.tensor(expected_grad_arr, device=device, dtype=dtype) for mode in ['lengths', 'offsets']: segment_reduce_kwargs = dict(axis=axis, unsafe=unsafe, initial=initial_value) if (mode == 'lengths'): segment_reduce_kwargs['lengths'] = lengths else: segment_reduce_kwargs['offsets'] = offsets actual_result = torch.segment_reduce(data=data, reduce=reduction, **segment_reduce_kwargs) self.assertEqual(expected_result, actual_result, rtol=1e-02, atol=1e-05, equal_nan=True) if not check_backward: return # Test backward actual_result.sum().backward() self.assertEqual(expected_grad, data.grad, rtol=1e-02, atol=1e-05, equal_nan=True) data = data.clone().detach().requires_grad_(True) # gradcheck does not work well with bfloat16 or fp16 cpu types # also there is small numerical difference with fp32 if dtype not in [torch.half, torch.bfloat16, torch.float]: # gradcheck does not like "nan" input, setting to random 10 d_non_nan = np.nan_to_num(data_arr, nan=10) new_data = torch.tensor( # [10 if v == float("nan") else v for v in data], d_non_nan, device=device, dtype=dtype, requires_grad=True, ) self.assertTrue( gradcheck( lambda x: torch.segment_reduce( data=x, reduce=reduction, **segment_reduce_kwargs), (new_data, ), ))
def test_pytorch_scatter_test_cases(self, device, dtypes, reduce): val_dtype, length_dtype = dtypes # zero-length segments are filled with reduction inits contrary to pytorch_scatter. tests = [ { 'src': [1, 2, 3, 4, 5, 6], 'index': [0, 0, 1, 1, 1, 3], 'indptr': [0, 2, 5, 5, 6], 'sum': [3, 12, 0, 6], 'prod': [2, 60, 1, 6], 'mean': [1.5, 4, float('nan'), 6], 'min': [1, 3, float('inf'), 6], 'max': [2, 5, -float('inf'), 6], }, { 'src': [[1, 2], [3, 4], [5, 6], [7, 8], [9, 10], [11, 12]], 'index': [0, 0, 1, 1, 1, 3], 'indptr': [0, 2, 5, 5, 6], 'sum': [[4, 6], [21, 24], [0, 0], [11, 12]], 'prod': [[3, 8], [315, 480], [1, 1], [11, 12]], 'mean': [[2, 3], [7, 8], [float('nan'), float('nan')], [11, 12]], 'min': [[1, 2], [5, 6], [float('inf'), float('inf')], [11, 12]], 'max': [[3, 4], [9, 10], [-float('inf'), -float('inf')], [11, 12]], }, { 'src': [[1, 3, 5, 7, 9, 11], [2, 4, 6, 8, 10, 12]], 'index': [[0, 0, 1, 1, 1, 3], [0, 0, 0, 1, 1, 2]], 'indptr': [[0, 2, 5, 5, 6], [0, 3, 5, 6, 6]], 'sum': [[4, 21, 0, 11], [12, 18, 12, 0]], 'prod': [[3, 315, 1, 11], [48, 80, 12, 1]], 'mean': [[2, 7, float('nan'), 11], [4, 9, 12, float('nan')]], 'min': [[1, 5, float('inf'), 11], [2, 8, 12, float('inf')]], 'max': [[3, 9, -float('inf'), 11], [6, 10, 12, -float('inf')]], }, { 'src': [[[1, 2], [3, 4], [5, 6]], [[7, 9], [10, 11], [12, 13]]], 'index': [[0, 0, 1], [0, 2, 2]], 'indptr': [[0, 2, 3, 3], [0, 1, 1, 3]], 'sum': [[[4, 6], [5, 6], [0, 0]], [[7, 9], [0, 0], [22, 24]]], 'prod': [[[3, 8], [5, 6], [1, 1]], [[7, 9], [1, 1], [120, 143]]], 'mean': [[[2, 3], [5, 6], [float('nan'), float('nan')]], [[7, 9], [float('nan'), float('nan')], [11, 12]]], 'min': [[[1, 2], [5, 6], [float('inf'), float('inf')]], [[7, 9], [float('inf'), float('inf')], [10, 11]]], 'max': [[[3, 4], [5, 6], [-float('inf'), -float('inf')]], [[7, 9], [-float('inf'), -float('inf')], [12, 13]]], }, { 'src': [[1, 3], [2, 4]], 'index': [[0, 0], [0, 0]], 'indptr': [[0, 2], [0, 2]], 'sum': [[4], [6]], 'prod': [[3], [8]], 'mean': [[2], [3]], 'min': [[1], [2]], 'max': [[3], [4]], }, { 'src': [[[1, 1], [3, 3]], [[2, 2], [4, 4]]], 'index': [[0, 0], [0, 0]], 'indptr': [[0, 2], [0, 2]], 'sum': [[[4, 4]], [[6, 6]]], 'prod': [[[3, 3]], [[8, 8]]], 'mean': [[[2, 2]], [[3, 3]]], 'min': [[[1, 1]], [[2, 2]]], 'max': [[[3, 3]], [[4, 4]]], }, ] for test in tests: data = torch.tensor(test['src'], dtype=val_dtype, device=device, requires_grad=True) indptr = torch.tensor(test['indptr'], dtype=length_dtype, device=device) dim = indptr.ndim - 1 # calculate lengths from indptr lengths = torch.diff(indptr, dim=dim) expected = torch.tensor(test[reduce], dtype=val_dtype, device=device) actual_result = torch.segment_reduce( data=data, reduce=reduce, lengths=lengths, axis=dim, unsafe=True, ) self.assertEqual(actual_result, expected) # test offsets actual_result = torch.segment_reduce( data=data, reduce=reduce, offsets=indptr, axis=dim, unsafe=True, ) self.assertEqual(actual_result, expected) if val_dtype == torch.float64: def fn(x, mode='lengths'): initial = 1 # supply initial values to prevent gradcheck from failing for 0 length segments # where nan/inf are reduction identities that produce nans when calculating the numerical jacobian if reduce == 'min': initial = 1000 elif reduce == 'max': initial = -1000 segment_reduce_args = {x, reduce} segment_reduce_kwargs = dict(axis=dim, unsafe=True, initial=initial) if mode == 'lengths': segment_reduce_kwargs[mode] = lengths elif mode == 'offsets': segment_reduce_kwargs[mode] = indptr return torch.segment_reduce(*segment_reduce_args, **segment_reduce_kwargs) self.assertTrue( gradcheck(partial(fn, mode='lengths'), (data.clone().detach().requires_grad_(True)))) self.assertTrue( gradcheck(partial(fn, mode='offsets'), (data.clone().detach().requires_grad_(True))))
def _test_simple_1d(self, reduction, device, dtype, unsafe, axis): lengths = torch.tensor([1, 2, 3, 0], device=device) data = torch.tensor( [1, float("nan"), 3, 4, 5, 5], device=device, dtype=dtype, requires_grad=True, ) initial_value = 0 if reduction == "max": expected_result = torch.tensor( [1, float("nan"), 5, initial_value], device=device, dtype=dtype ) expected_grad = torch.tensor( [1, 1, 0, 0, 0.5, 0.5], device=device, dtype=dtype ) elif reduction == "mean": expected_result = torch.tensor( [1, float("nan"), 4.666, initial_value], device=device, dtype=dtype ) expected_grad = torch.tensor( [1.0, 0.5, 0.5, 0.333, 0.333, 0.333], device=device, dtype=dtype ) actual_result = torch.segment_reduce( data=data, reduce=reduction, lengths=lengths, axis=axis, unsafe=unsafe, initial=initial_value, ) self.assertEqual( expected_result, actual_result, rtol=1e-02, atol=1e-05, equal_nan=True ) # TODO: Remove this check once cuda backward support is implemented if data.is_cuda: return # Test backward actual_result.sum().backward() self.assertEqual( expected_grad, data.grad, rtol=1e-02, atol=1e-05, equal_nan=True ) # gradcheck does not work well with bfloat16 or fp16 cpu types # also there is small numerical difference with fp32 if dtype not in [torch.half, torch.bfloat16, torch.float]: # gradcheck does not like "nan" input data = torch.tensor( [1, 10, 3, 4, 5, 5], device=device, dtype=dtype, requires_grad=True, ) self.assertTrue( gradcheck( lambda x: torch.segment_reduce( data=x, reduce=reduction, lengths=lengths, axis=axis, unsafe=unsafe, initial=initial_value, ), (data,), ) )