Exemple #1
0
    def __init__(self,
                 num_units,
                 n_input,
                 alpha,
                 sigma_rec=0,
                 activation='softplus',
                 w_rec_init='diag',
                 rng=None,
                 reuse=None,
                 name=None):
        super(LeakyRNNCell, self).__init__(_reuse=reuse, name=name)

        # Inputs must be 2-dimensional.
        # self.input_spec = base_layer.InputSpec(ndim=2)

        self._num_units = num_units
        self._w_rec_init = w_rec_init
        self._reuse = reuse

        if activation == 'softplus':
            self._activation = lambda x: F.softplus(x)
            self._w_in_start = 1.0
            self._w_rec_start = 0.5
        elif activation == 'tanh':
            self._activation = lambda x: F.tanh(x)
            self._w_in_start = 1.0
            self._w_rec_start = 1.0
        elif activation == 'relu':
            self._activation = lambda x: F.relu(x)
            self._w_in_start = 1.0
            self._w_rec_start = 0.5
        elif activation == 'power':
            self._activation = lambda x: torch.square(F.relu(x))
            self._w_in_start = 1.0
            self._w_rec_start = 0.01
        elif activation == 'retanh':
            self._activation = lambda x: F.tanh(F.relu(x))
            self._w_in_start = 1.0
            self._w_rec_start = 0.5
        else:
            raise ValueError('Unknown activation')
        self._alpha = alpha
        self._sigma = np.sqrt(2 / alpha) * sigma_rec
        if rng is None:
            self.rng = np.random.RandomState()
        else:
            self.rng = rng

        # Generate initialization matrix
        n_hidden = self._num_units
        w_in0 = (self.rng.randn(n_input, n_hidden) / np.sqrt(n_input) *
                 self._w_in_start)

        if self._w_rec_init == 'diag':
            w_rec0 = self._w_rec_start * np.eye(n_hidden)
        elif self._w_rec_init == 'randortho':
            w_rec0 = self._w_rec_start * tools.gen_ortho_matrix(n_hidden,
                                                                rng=self.rng)
        elif self._w_rec_init == 'randgauss':
            w_rec0 = (self._w_rec_start * self.rng.randn(n_hidden, n_hidden) /
                      np.sqrt(n_hidden))

        matrix0 = np.concatenate((w_in0, w_rec0), axis=0)

        self.w_rnn0 = matrix0
        nn.init.constant_(self._initializer, matrix0, dtype=torch.float32)
 def KL(self, mean, std):
     #epsilon = 1e-10
     KLdiv = 0.5 * (torch.square(mean) + torch.exp(std) - std -
                    1.0).mean(dim=0)
     return torch.sum(KLdiv)
Exemple #3
0
def MSE(x, y):
    errors = x - y
    return torch.mean(torch.square(errors.abs()))
Exemple #4
0
def test_tlutlinear():
    plot_en = False

    hwcfg = {
        "temporal": "w",
        "widtht": 4,
        "formati": "fxp",
        "widthi": 12,
        "quantilei": 1,
        "formatw": "fxp",
        "widthw": 12,
        "quantilew": 1,
        "cycle": None,
        "rounding": "round",
        "signmag": True
    }

    if hwcfg["formati"] == "bfloat16":
        dtype = torch.bfloat16
    elif hwcfg["formati"] == "float16":
        dtype = torch.float16
    elif hwcfg["formati"] == "float32":
        dtype = torch.float32
    else:
        if hwcfg["formatw"] == "bfloat16":
            dtype = torch.bfloat16
        elif hwcfg["formatw"] == "float16":
            dtype = torch.float16
        else:
            dtype = torch.float32

    batch = 16
    in_feature = 256
    out_feature = 256
    bias = True

    input_int_bit = 3

    input = ((torch.rand(batch, in_feature) - 0.5) * 2).to(device).type(dtype)
    if hwcfg["formati"] == "fxp":
        input = torch.trunc(
            input << hwcfg["widthi"]).round() >> hwcfg["widthi"]
    input = input << input_int_bit

    fc = torch.nn.Linear(in_feature, out_feature, bias=bias,
                         dtype=dtype).to(device)
    if hwcfg["formatw"] == "fxp":
        fc.weight.data = torch.trunc(
            fc.weight << hwcfg["widthw"]).round() >> hwcfg["widthw"]
        if bias:
            fc.bias.data = torch.trunc(
                fc.bias << hwcfg["widthw"]).round() >> hwcfg["widthw"]

    fc_o = fc(input)

    ufc = TLUTLinear(in_feature,
                     out_feature,
                     bias=bias,
                     weight_ext=fc.weight,
                     bias_ext=fc.bias,
                     hwcfg=hwcfg).to(device)
    ufc_o = ufc(input)
    print(ufc.hwcfg)

    fc_o.abs().mean().backward()
    ufc_o.abs().mean().backward()

    diff = (ufc_o - fc_o)
    print()
    print("diff max:", diff.max())
    print("diff min:", diff.min())
    print("diff mean:", diff.mean())
    print("diff rmse:", torch.sqrt(torch.mean(torch.square(diff))))

    diff_grad = (ufc.weight.grad - fc.weight.grad)
    print()
    print("diff grad max:", diff_grad.max())
    print("diff grad min:", diff_grad.min())
    print("diff grad mean:", diff_grad.mean())
    print("diff grad rmse:", torch.sqrt(torch.mean(torch.square(diff_grad))))

    if plot_en:
        fig = plt.hist(diff.cpu().detach().numpy().flatten(),
                       bins='auto')  # arguments are passed to np.histogram
        plt.title("Histogram for output error")
        plt.show()

        fig = plt.hist(diff_grad.cpu().detach().numpy().flatten(),
                       bins='auto')  # arguments are passed to np.histogram
        plt.title("Histogram for grad error")
        plt.show()
Exemple #5
0
 def loss(self, x, y):
     return torch.mean(torch.square(self.f(x) - y))
Exemple #6
0
    def forward(self, input):
        input = input.reshape(len(input), self.input_dim, -1)  # [N, F, T]
        input = input.permute(0, 2, 1)  # [N, T, F]
        time_step = input.shape[1]

        for ts in range(time_step):
            x = input[:, ts, :]
            if len(self.states) == 0:  # hasn't initialized yet
                self.init_states(x)
            self.get_constants(x)
            p_tm1 = self.states[0]  # noqa: F841
            h_tm1 = self.states[1]
            S_re_tm1 = self.states[2]
            S_im_tm1 = self.states[3]
            time_tm1 = self.states[4]
            B_U = self.states[5]
            B_W = self.states[6]
            frequency = self.states[7]

            x_i = torch.matmul(x * B_W[0], self.W_i) + self.b_i
            x_ste = torch.matmul(x * B_W[0], self.W_ste) + self.b_ste
            x_fre = torch.matmul(x * B_W[0], self.W_fre) + self.b_fre
            x_c = torch.matmul(x * B_W[0], self.W_c) + self.b_c
            x_o = torch.matmul(x * B_W[0], self.W_o) + self.b_o

            i = self.inner_activation(x_i +
                                      torch.matmul(h_tm1 * B_U[0], self.U_i))
            ste = self.inner_activation(x_ste +
                                        torch.matmul(h_tm1 *
                                                     B_U[0], self.U_ste))
            fre = self.inner_activation(x_fre +
                                        torch.matmul(h_tm1 *
                                                     B_U[0], self.U_fre))

            ste = torch.reshape(ste, (-1, self.hidden_dim, 1))
            fre = torch.reshape(fre, (-1, 1, self.freq_dim))

            f = ste * fre

            c = i * self.activation(x_c +
                                    torch.matmul(h_tm1 * B_U[0], self.U_c))

            time = time_tm1 + 1

            omega = torch.tensor(2 * np.pi) * time * frequency

            re = torch.cos(omega)
            im = torch.sin(omega)

            c = torch.reshape(c, (-1, self.hidden_dim, 1))

            S_re = f * S_re_tm1 + c * re
            S_im = f * S_im_tm1 + c * im

            A = torch.square(S_re) + torch.square(S_im)

            A = torch.reshape(A, (-1, self.freq_dim)).float()
            A_a = torch.matmul(A * B_U[0], self.U_a)
            A_a = torch.reshape(A_a, (-1, self.hidden_dim))
            a = self.activation(A_a + self.b_a)

            o = self.inner_activation(x_o +
                                      torch.matmul(h_tm1 * B_U[0], self.U_o))

            h = o * a
            p = torch.matmul(h, self.W_p) + self.b_p

            self.states = [p, h, S_re, S_im, time, None, None, None]
        self.states = []
        return self.fc_out(p).squeeze()
Exemple #7
0
def heat_map_function(y_dist, x_dist, y_scale, x_scale):
    x = 1 / (1 + (torch.square(y_dist / (1e-6 + y_scale)) + torch.square(
        x_dist / (1e-6 + x_scale))))
    return x
def predict(testloader, spoof_labels, rppg_label, cnn_model, rnn_model,
            device):
    threshold = 0.1

    cnn_model = cnn_model.to(device)
    cnn_model.eval()

    rnn_model = rnn_model.to(device)
    rnn_model.eval()

    one = torch.ones(BATCH_SIZE, 1, 32, 32).to(device)
    zero = torch.zeros(BATCH_SIZE, 1, 32, 32).to(device)

    hidden = (torch.zeros(1, 1, 100,
                          device=device), torch.zeros(1, 1, 100,
                                                      device=device))

    score_data = list()

    for i, data in tqdm(enumerate(testloader, 0), total=len(testloader)):
        images, labels_D = data
        images, labels_D = images.to(device), labels_D.to(device)

        with torch.no_grad():
            D, T = cnn_model(images)

            # Non_rigid_registration_layer
            V = torch.where(D >= threshold, one, zero)
            U = T * V
            F = U

            hidden = repackage_hidden(hidden)
            outputs_F, hidden = rnn_model(F, hidden)
            outputs_F = outputs_F.view(50)

            label = spoof_labels[(i * BATCH_SIZE):(i * BATCH_SIZE) +
                                 BATCH_SIZE][-1]

            norm_D = torch.linalg.norm(D[-1, :, :, :])
            norm_F = torch.linalg.norm(outputs_F)

            score = torch.square(norm_F) + (LAMBDA * torch.square(norm_D))
            with open('./training_log/val_scores.csv', 'a') as fd:
                csv_row = '\n' + \
                          str(i) + ', ' + \
                          str(label) + ', ' + \
                          str(norm_D.cpu().detach().numpy()) + ', ' + \
                          str(norm_F.cpu().detach().numpy()) + ', ' + \
                          str(score.cpu().detach().numpy())
                fd.write(csv_row)

            score_data.append(
                list((i, float(score.cpu().detach().numpy()), float(label))))

            fig, ax = plt.subplots()
            ax.plot(outputs_F.cpu().detach().numpy())
            ax.plot(rppg_label[i])
            plt.grid(True)
            plt.ylabel('rppg_signal')
            plt.title(
                str('Label : ' + CLASS_NAMES[int(label)] + ' | rPPG Norm: ' +
                    str(norm_F.cpu().detach().numpy())))
            rppg_path = 'rppg_vis_oulu/' + str('val_batch_' + str(i) + '_' +
                                               CLASS_NAMES[int(label)])
            plt.savefig(rppg_path)

    print(score_data)
    np.save('thresh_test.npy', score_data)
    thresh_plot(np.array(score_data))
Exemple #9
0
    def __call__(self, y_pred, y_true):
        # Calculate the Mean Squared Error and use it as loss.
        mse = torch.mean(torch.square(y_true - y_pred))

        return mse
def mseloss(scores, labels):
    loss = torch.mean(torch.square(torch.sub(scores, labels)))

    return loss
def dist(bbox1, bbox2):
    return torch.sqrt(torch.sum(torch.square(bbox1[:2] - bbox2[:2])))
Exemple #12
0
 def g_loss_func(fake):
     return torch.mean(torch.square(fake - 1.0))
Exemple #13
0
 def d_loss_func(real, fake):
     return torch.mean(torch.square(real - 1.0)) + torch.mean(
         torch.square(fake))
Exemple #14
0
  def __init__(self,
               n_tasks: int,
               n_features: int,
               layer_sizes: Sequence[int] = [1000],
               weight_init_stddevs: OneOrMany[float] = 0.02,
               bias_init_consts: OneOrMany[float] = 1.0,
               weight_decay_penalty: float = 0.0,
               weight_decay_penalty_type: str = 'l2',
               dropouts: OneOrMany[float] = 0.5,
               activation_fns: OneOrMany[ActivationFn] = 'relu',
               n_classes: int = 2,
               residual: bool = False,
               **kwargs) -> None:
    """Create a MultitaskClassifier.

    In addition to the following arguments, this class also accepts
    all the keyword arguments from TensorGraph.

    Parameters
    ----------
    n_tasks: int
      number of tasks
    n_features: int
      number of features
    layer_sizes: list
      the size of each dense layer in the network.  The length of
      this list determines the number of layers.
    weight_init_stddevs: list or float
      the standard deviation of the distribution to use for weight
      initialization of each layer.  The length of this list should
      equal len(layer_sizes).  Alternatively this may be a single
      value instead of a list, in which case the same value is used
      for every layer.
    bias_init_consts: list or float
      the value to initialize the biases in each layer to.  The
      length of this list should equal len(layer_sizes).
      Alternatively this may be a single value instead of a list, in
      which case the same value is used for every layer.
    weight_decay_penalty: float
      the magnitude of the weight decay penalty to use
    weight_decay_penalty_type: str
      the type of penalty to use for weight decay, either 'l1' or 'l2'
    dropouts: list or float
      the dropout probablity to use for each layer.  The length of this list should equal len(layer_sizes).
      Alternatively this may be a single value instead of a list, in which case the same value is used for every layer.
    activation_fns: list or object
      the PyTorch activation function to apply to each layer.  The length of this list should equal
      len(layer_sizes).  Alternatively this may be a single value instead of a list, in which case the
      same value is used for every layer.  Standard activation functions from torch.nn.functional can be specified by name.
    n_classes: int
      the number of classes
    residual: bool
      if True, the model will be composed of pre-activation residual blocks instead
      of a simple stack of dense layers.
    """
    self.n_tasks = n_tasks
    self.n_features = n_features
    self.n_classes = n_classes
    n_layers = len(layer_sizes)
    if not isinstance(weight_init_stddevs, SequenceCollection):
      weight_init_stddevs = [weight_init_stddevs] * n_layers
    if not isinstance(bias_init_consts, SequenceCollection):
      bias_init_consts = [bias_init_consts] * n_layers
    if not isinstance(dropouts, SequenceCollection):
      dropouts = [dropouts] * n_layers
    if isinstance(activation_fns,
                  str) or not isinstance(activation_fns, SequenceCollection):
      activation_fns = [activation_fns] * n_layers
    activation_fns = [get_activation(f) for f in activation_fns]

    # Define the PyTorch Module that implements the model.

    class PytorchImpl(torch.nn.Module):

      def __init__(self):
        super(PytorchImpl, self).__init__()
        self.layers = torch.nn.ModuleList()
        prev_size = n_features
        for size, weight_stddev, bias_const in zip(
            layer_sizes, weight_init_stddevs, bias_init_consts):
          layer = torch.nn.Linear(prev_size, size)
          torch.nn.init.normal_(layer.weight, 0, weight_stddev)
          torch.nn.init.constant_(layer.bias, bias_const)
          self.layers.append(layer)
          prev_size = size
        self.output_layer = torch.nn.Linear(prev_size, n_tasks * n_classes)
        torch.nn.init.xavier_uniform_(self.output_layer.weight)
        torch.nn.init.constant_(self.output_layer.bias, 0)

      def forward(self, x):
        prev_size = n_features
        next_activation = None
        for size, layer, dropout, activation_fn, in zip(
            layer_sizes, self.layers, dropouts, activation_fns):
          y = x
          if next_activation is not None:
            y = next_activation(x)
          y = layer(y)
          if dropout > 0.0 and self.training:
            y = F.dropout(y, dropout)
          if residual and prev_size == size:
            y = x + y
          x = y
          prev_size = size
          next_activation = activation_fn
        if next_activation is not None:
          y = next_activation(y)
        neural_fingerprint = y
        y = self.output_layer(y)
        logits = torch.reshape(y, (-1, n_tasks, n_classes))
        output = F.softmax(logits, dim=2)
        return (output, logits, neural_fingerprint)

    model = PytorchImpl()
    regularization_loss: Optional[Callable]
    if weight_decay_penalty != 0:
      weights = [layer.weight for layer in model.layers]
      if weight_decay_penalty_type == 'l1':
        regularization_loss = lambda: weight_decay_penalty * torch.sum(torch.stack([torch.abs(w).sum() for w in weights]))
      else:
        regularization_loss = lambda: weight_decay_penalty * torch.sum(torch.stack([torch.square(w).sum() for w in weights]))
    else:
      regularization_loss = None
    super(MultitaskClassifier, self).__init__(
        model,
        dc.models.losses.SoftmaxCrossEntropy(),
        output_types=['prediction', 'loss', 'embedding'],
        regularization_loss=regularization_loss,
        **kwargs)
Exemple #15
0
def MockTrain(args, test_dataloader, model, save_pred_file, device):
    # eval_test
    model.train()
    test_loss, test_accuracy = 0, 0
    nb_test_steps, nb_test_examples = 0, 0
    grads_in_norm_list = []

    with open(save_pred_file,"w") as f_test:
        for input_ids, input_mask, segment_ids, label_ids, seq_lens, \
            context_ids, context_lens in test_dataloader:
            if torch.cuda.is_available():
                torch.cuda.empty_cache()
            # truncate to save space and computing resource
            max_seq_lens = max(seq_lens)[0]
            input_ids = input_ids[:,:max_seq_lens]
            input_mask = input_mask[:,:max_seq_lens]
            segment_ids = segment_ids[:,:max_seq_lens]
            input_ids = input_ids.to(device)
            input_mask = input_mask.to(device)
            segment_ids = segment_ids.to(device)
            label_ids = label_ids.to(device)
            seq_lens = seq_lens.to(device)
            # context fields
            context_ids = context_ids.to(device)

            # ok, we have to sperate the embeddings out
            tmp_test_loss, logits, _, embedding_output = \
                model(input_ids, segment_ids, input_mask, seq_lens,
                        device=device, labels=label_ids,
                        context_ids=context_ids,
                        context_lens=context_lens,
                        include_headwise=args.head_sp_loss,
                        headwise_weight=args.head_sp_loss_lambda)

            # mock gradient
            logits = F.softmax(logits, dim=-1)
            sensitivity_class = 0
            sensitivity_grads = torch.zeros(logits.shape)
            sensitivity_grads[:,sensitivity_class] = 1.0
            sensitivity_grads = sensitivity_grads.to(device)
            grads_in = torch.autograd.grad(logits, embedding_output, grad_outputs=sensitivity_grads)[0]
            grads_in_norm = torch.square(torch.norm(grads_in, dim=-1))
            grads_in_norm_list.append(grads_in_norm)

            logits = logits.detach().cpu().numpy()
            label_ids = label_ids.to('cpu').numpy()
            outputs = np.argmax(logits, axis=1)
            for output_i in range(len(outputs)):
                f_test.write(str(outputs[output_i]))
                for ou in logits[output_i]:
                    f_test.write(" "+str(ou))
                f_test.write("\n")
            tmp_test_accuracy=np.sum(outputs == label_ids)

            test_loss += tmp_test_loss.mean().item()
            test_accuracy += tmp_test_accuracy

            nb_test_examples += input_ids.size(0)
            nb_test_steps += 1

            model.zero_grad()

    test_loss = test_loss / nb_test_steps
    test_accuracy = test_accuracy / nb_test_examples

    return test_loss, test_accuracy, grads_in_norm_list
Exemple #16
0
 def var(self):
     # at self._N = 0
     # return self._M instead of self._S
     # to prevent division by 0 in state normalization
     return self._S / (self._n - 1) if self._n > 1 else t.square(self._M)
Exemple #17
0
def run_epoch(experiment, network, optimizer, dataloader, config, use_tqdm = False, debug=False, plot=False):
    cum_loss = 0.0
    cum_param_loss = 0.0
    cum_position_loss = 0.0
    cum_velocity_loss = 0.0
    num_samples=0.0
    if use_tqdm:
        t = tqdm(enumerate(dataloader), total=len(dataloader))
    else:
        t = enumerate(dataloader)
    network.train()  # This is important to call before training!
    dataloaderlen = len(dataloader)
    
    dev = next(network.parameters()).device  # we are only doing single-device training for now, so this works fine.
    dtype = next(network.parameters()).dtype # we are only doing single-device training for now, so this works fine.
    loss_weights = config["loss_weights"]
    positionerror = loss_functions.SquaredLpNormLoss().type(dtype).to(dev)

    #_, _, _, _, _, _, sample_session_times,_,_ = dataloader.dataset[0]
    bezier_order = network.bezier_order
    d = network.output_dimension
    for (i, imagedict) in t:
        track_names = imagedict["track"]
        input_images = imagedict["images"].type(dtype).to(device=dev)
        batch_size = input_images.shape[0]
        session_times = imagedict["session_times"].type(dtype).to(device=dev)
        ego_positions = imagedict["ego_positions"].type(dtype).to(device=dev)
        ego_velocities = imagedict["ego_velocities"].type(dtype).to(device=dev)
        targets = ego_positions

        
        dt = session_times[:,-1]-session_times[:,0]
        s_torch_cur = (session_times - session_times[:,0,None])/dt[:,None]

        M, controlpoints_fit = deepracing_models.math_utils.bezier.bezierLsqfit(targets, bezier_order, t = s_torch_cur)
        Msquare = torch.square(M)

                
        means, varfactors, covarfactors = network(input_images)
        scale_trils = torch.diag_embed(varfactors) + torch.diag_embed(covarfactors, offset=-1)
        covars = torch.matmul(scale_trils, scale_trils.transpose(2,3))
        covars_expand = covars.unsqueeze(1).expand(batch_size, Msquare.shape[1], Msquare.shape[2], d, d)
        poscovar = torch.sum(Msquare[:,:,:,None,None]*covars_expand, dim=2)
        posmeans = torch.matmul(M, means)
        initial_points = targets[:,0].unsqueeze(1)
        final_points = (dt[:,None]*ego_velocities[:,0]).unsqueeze(1)
        deltas = final_points - initial_points
        ds = torch.linspace(0.0,1.0,steps=means.shape[1])
        straight_lines = torch.cat([initial_points + t.item()*deltas for t in ds], dim=1)
        priorscaletril = torch.diag_embed(torch.ones_like(straight_lines))
        priorcurves = D.MultivariateNormal(controlpoints_fit, scale_tril=priorscaletril, validate_args=False)
        distcurves = D.MultivariateNormal(means, scale_tril=scale_trils, validate_args=False)
        distpos = D.MultivariateNormal(posmeans, covariance_matrix=poscovar, validate_args=False)

        position_error = positionerror(posmeans, targets)
        log_probs = distpos.log_prob(ego_positions)
        NLL = torch.mean(-log_probs)
        kl_divergences = D.kl_divergence(distcurves, priorcurves)
        mean_kl = torch.mean(kl_divergences)

        
        if debug and plot:
            fig, (ax1, ax2) = plt.subplots(1, 2, sharey=False)
            print("position_error: %f" % position_error.item() )
            images_np = np.round(255.0*input_images[0].detach().cpu().numpy().copy().transpose(0,2,3,1)).astype(np.uint8)
            #image_np_transpose=skimage.util.img_as_ubyte(images_np[-1].transpose(1,2,0))
            # oap = other_agent_positions[other_agent_positions==other_agent_positions].view(1,-1,60,2)
            # print(oap)
            ims = []
            for i in range(images_np.shape[0]):
                ims.append([ax1.imshow(images_np[i])])
            ani = animation.ArtistAnimation(fig, ims, interval=250, blit=True, repeat=True)

            fit_points = torch.matmul(M, controlpoints_fit)
            prior_points = torch.matmul(M, straight_lines)

            # gt_points_np = ego_positions[0].detach().cpu().numpy().copy()
            gt_points_np = targets[0].detach().cpu().numpy().copy()
            pred_points_np = posmeans[0].detach().cpu().numpy().copy()
            pred_control_points_np = means[0].detach().cpu().numpy().copy()
            fit_points_np = fit_points[0].cpu().numpy().copy()
            fit_control_points_np = controlpoints_fit[0].cpu().numpy().copy()

            prior_points_np = prior_points[0].cpu().numpy().copy()
            prior_control_points_np = straight_lines[0].cpu().numpy().copy()
            
            ymin = np.min(np.hstack([gt_points_np[:,1], pred_points_np[:,1] ])) - 2.5
            ymax = np.max(np.hstack([gt_points_np[:,1], pred_points_np[:,1] ])) + 2.5
            xmin = np.min(np.hstack([gt_points_np[:,0], fit_points_np[:,0] ])) -  2.5
            xmax = np.max(np.hstack([gt_points_np[:,0], fit_points_np[:,0] ]))
            ax2.set_xlim(xmax,xmin)
            ax2.set_ylim(ymin,ymax)
            ax2.plot(gt_points_np[:,0],gt_points_np[:,1],'g+', label="Ground Truth Waypoints")
            ax2.plot(pred_points_np[:,0],pred_points_np[:,1],'r-', label="Predicted Bézier Curve")
            ax2.plot(prior_points_np[:,0],prior_points_np[:,1], label="Prior")
            # ax2.plot(fit_points_np[:,0],fit_points_np[:,1],'b-', label="Best-fit Bézier Curve")
            #ax2.scatter(fit_control_points_np[1:,0],fit_control_points_np[1:,1],c="b", label="Bézier Curve's Control Points")
       #     ax2.plot(pred_points_np[:,1],pred_points_np[:,0],'r-', label="Predicted Bézier Curve")
          #  ax2.scatter(pred_control_points_np[:,1],pred_control_points_np[:,0], c='r', label="Predicted Bézier Curve's Control Points")
            plt.legend()
            plt.show()

        # loss = position_error
        loss = loss_weights["position"]*position_error + loss_weights["nll"]*NLL + loss_weights["kl_divergence"]*mean_kl
        #loss = loss_weights["position"]*position_error
        optimizer.zero_grad()
        loss.backward() 
        # Weight and bias updates.
        optimizer.step()
        # logging information
        current_position_loss_float = float(position_error.item())
        num_samples += 1.0
        if not debug:
            experiment.log_metric("current_position_loss", current_position_loss_float)
            experiment.log_metric("logprob", NLL.item())
            experiment.log_metric("kl_divergence", mean_kl.item())
        if use_tqdm:
            t.set_postfix({"current_position_loss" : current_position_loss_float})
Exemple #18
0
    def step(self, closure=None):
        """Performs a single optimization step.
        Arguments:
            closure (callable, optional): A closure that reevaluates the model
                and returns the loss.
        """
        loss = None
        if closure is not None:
            loss = closure()

        for group in self.param_groups:
            for p in group['params']:
                if p.grad is None:
                    continue
                grad = p.grad.data
                if grad.is_sparse:
                    raise RuntimeError(
                        'cosangulargrad does not support sparse gradients, please consider SparseAdam instead'
                    )

                state = self.state[p]

                # State initialization
                if len(state) == 0:
                    state['step'] = 0
                    # Exponential moving average of gradient values
                    state['exp_avg'] = torch.zeros_like(p.data)
                    # Exponential moving average of squared gradient values
                    state['exp_avg_sq'] = torch.zeros_like(p.data)
                    # Previous gradient
                    state['previous_grad'] = torch.zeros_like(p.data)
                    # temporary minimum value for comparison
                    state['min'] = torch.zeros_like(p.data)
                    # temporary difference between gradients for comparison
                    state['diff'] = torch.zeros_like(p.data)
                    # final cos value to be used
                    state['final_cos_theta'] = torch.zeros_like(p.data)

                exp_avg, exp_avg_sq, previous_grad, min, diff, final_cos_theta = state['exp_avg'], state['exp_avg_sq'], \
                                                                                 state['previous_grad'], state['min'], \
                                                                                 state['diff'], state['final_cos_theta']
                beta1, beta2 = group['betas']

                state['step'] += 1

                if group['weight_decay'] != 0:
                    grad.add_(group['weight_decay'], p.data)

                # Decay the first and second moment running average coefficient
                exp_avg.mul_(beta1).add_(1 - beta1, grad)
                exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad)
                denom = exp_avg_sq.sqrt().add_(group['eps'])

                bias_correction1 = 1 - beta1**state['step']
                bias_correction2 = 1 - beta2**state['step']

                tan_theta = abs(
                    (previous_grad - grad) / (1 + previous_grad * grad))
                cos_theta = 1 / torch.sqrt(1 + torch.square(tan_theta))

                angle = torch.atan(tan_theta) * (180 / 3.141592653589793238)
                ans = torch.gt(angle, min)
                ans1, count = torch.unique(ans, return_counts=True)

                try:
                    if (count[1] < count[0]):
                        min = angle
                        diff = abs(previous_grad - grad)
                        final_cos_theta = cos_theta.clone()
                except:
                    if (ans1[0] == "False"):
                        min = angle
                        diff = abs(previous_grad - grad)
                        final_cos_theta = cos_theta.clone()

                angular_coeff = torch.tanh(
                    abs(final_cos_theta
                        )) * 0.5 + 0.5  # Calculating Angular coefficient

                state['previous_grad'] = grad.clone()
                state['min'] = min.clone()
                state['diff'] = diff.clone()
                state['final_cos_theta'] = final_cos_theta.clone()

                # update momentum with angular_coeff
                exp_avg1 = exp_avg * angular_coeff

                step_size = group['lr'] * math.sqrt(
                    bias_correction2) / bias_correction1

                p.data.addcdiv_(-step_size, exp_avg1, denom)

        return loss
 def __call__(self, preds, targets):
     _check_same_shape(preds, targets)
     self.sum_squared_error += torch.sum(
         torch.square(torch.sub(preds, targets)))
     self.total += targets.numel()
Exemple #20
0
def calculate_loss(net, x, y_targ):
    y = net(x)
    return y, tr.sum(tr.square(tr.sub(y, y_targ)))
Exemple #21
0
 def forward(self, x):
     square = torch.square(x)  #(x,y) -> (x^2, y^2)
     prod = torch.prod(x, 3).unsqueeze(3)  #(x, y) -> x*y
     output = torch.cat((x, square, prod), 3)
     return output
Exemple #22
0
def truth(x):
    # paraboloid
    return torch.square(x).sum(dim=1)
Exemple #23
0
 def forward(self, x):
     square = torch.square(x)
     prod = torch.prod(x, 2).unsqueeze(2)
     output = torch.cat((square, prod),
                        2)  #output is: (x,y) -> (x^2, y^2, xy)
     return output
Exemple #24
0
    def forward(self, input):
        weight_centered = self.weight - torch.mean(self.weight, dim=1, keepdim=True)
        frob = torch.sqrt(torch.sum(torch.square(weight_centered), dim=[0,1], keepdim=True)*(1/self.dmin))
        weight_frob = (weight_centered / frob) * self.scale

        return F.linear(input, weight_frob, self.bias)
 def forward(self, preds: Tensor, target: Tensor) -> Tensor:
     return torch.mean(torch.square(preds - target))
Exemple #26
0
def train(modelname,
          dataset,
          lr=.5 * 0.001,
          logging=False,
          epochs=100,
          show_ROC=False,
          saveResults=False,
          optimThreshould=False,
          filterFraction=0,
          savePrediction=False):
    print()
    Adj_norm, Adj, X, labels = get_data(dataset)
    model = get_model(modelname, dataset, Adj_norm)
    optimizer = optim.Adam(model.parameters(), lr=lr)

    loss_list = []
    iterable = range(epochs)
    if logging == False:
        iterable = tqdm(range(epochs), desc=dataset)
    for i in iterable:
        optimizer.zero_grad()
        Att, A = model(X)
        feat_loss = torch.sqrt(torch.sum(torch.square(Att - X)))
        struct_loss = torch.sqrt(torch.sum(torch.square(A - Adj)))
        loss = torch.add(torch.mul(feat_loss, 0.5),
                         torch.mul(struct_loss, 0.5))
        loss.backward()
        optimizer.step()
        l = (model(X))
        loss_list.append(loss.item())
        if logging:
            if i > 3:
                if loss_list[-1] == loss_list[-2] and loss_list[
                        -2] == loss_list[-3]:
                    print("\n")
                    print("Epoch : ", i,
                          " Loss: =", loss.item(), "Struct_loss = ",
                          struct_loss.item(), "Feature_loss = ",
                          feat_loss.item())
                    break
            if i % 5 == 0:
                print("Epoch : ", i, " Loss: =", loss.item(), "Struct_loss = ",
                      struct_loss.item(), "Feature_loss = ", feat_loss.item())
        else:
            pass

    with torch.no_grad():
        feat_loss = torch.square(model(X)[0] - X)
        fl = []
        for i in feat_loss:
            fl.append(torch.sqrt(torch.sum(i)))
        struct_loss = torch.square(model(X)[1] - Adj)
        sl = []
        for i in struct_loss:
            sl.append(torch.sqrt(torch.sum(i)))
        diff = []
        for i in range(len(feat_loss)):
            diff.append((fl[i] + sl[i]) / 2)
    fpr, tpr, thresholds = metrics.roc_curve(labels,
                                             diff,
                                             pos_label=None,
                                             drop_intermediate=False)
    threshold = thresholds[0]
    if optimThreshould:
        threshold = thresholds[0]
        min_d = 10
        th_ind = 0
        for i in range(len(fpr)):
            distance = math.sqrt((1 - fpr[i])**2 + (tpr[i])**2)
            if distance < min_d:
                min_d = distance
                th_ind = i
            threshold = thresholds[i]
        # print("Optimum threshould: "+str(threshold))
        # print("threshould percentile:",th_ind*100.0/len(thresholds))

    filterResult = []
    if filterFraction != 0:
        th_ind = (filterFraction) * len(fpr)
        filterThreshould = thresholds[int(th_ind)]
        filtered_prediction = []
        for loss in diff:
            if loss > filterThreshould:
                filtered_prediction.append(1)
            else:
                filtered_prediction.append(0)
        prfs = precision_recall_fscore_support(np.reshape(labels, (-1)),
                                               filtered_prediction)
        filterResult.append(
            str(accuracy_score(np.reshape(labels, (-1)), filtered_prediction)))
        print("Total Nodes:", len(filtered_prediction))
        print("Labeled anomalies:", sum(labels))
        print("Anomalies predicted:", sum(filtered_prediction))
        print("prediction Accuracy: ",
              accuracy_score(np.reshape(labels, (-1)), filtered_prediction))
        print("precision", prfs[0])
        print("recall", prfs[1])
        if savePrediction:
            with open('output.txt', 'w') as filehandle:
                for listitem in filtered_prediction:
                    filehandle.write('%s\n' % listitem)

    auc_score = roc_auc_score(labels, diff)
    print(dataset + " AUC score : ", auc_score)
    if saveResults:
        file_path = "Results/" + dataset + "/results.json"
        data = {}
        data[modelname] = {"auc_score": 0.0, "model_summary": "fake summary"}
        if not (path.exists(file_path) and path.isfile(file_path)):
            f = open(file_path, 'x')

        else:
            f = open(file_path)
            try:
                data1 = json.load(f)
                data = data1
            except:
                print("Issues in reading json file")
            f.close()
            f = open(file_path, 'w')
            if modelname not in data.keys():
                data[modelname] = {
                    "auc_score": 0.0,
                    "model_summary": "fake summary"
                }
        data[modelname]["auc_score"] = auc_score
        if optimThreshould:
            data[modelname]['threshold'] = str(threshold)
        if filterFraction != 0:
            data[modelname]['accuracy'] = str(filterResult[0])
        model_summary = summary(model, X, device='cpu', verbose=0)
        data[modelname]["model_summary"] = str(model_summary)
        f.write(json.dumps(data))
        f.close()

    fig = plt.figure()
    plt.title(dataset + " AUC_score=" + str(auc_score))
    plt.plot(fpr, tpr)
    if show_ROC:
        plt.show()
    if saveResults:
        fig.savefig('./Results' + '/' + dataset + '/roc.png')
    plt.close()
    return auc_score
Exemple #27
0
  def __init__(self,
               n_tasks: int,
               n_features: int,
               layer_sizes: Sequence[int] = [1000],
               weight_init_stddevs: OneOrMany[float] = 0.02,
               bias_init_consts: OneOrMany[float] = 1.0,
               weight_decay_penalty: float = 0.0,
               weight_decay_penalty_type: str = 'l2',
               dropouts: OneOrMany[float] = 0.5,
               activation_fns: OneOrMany[ActivationFn] = 'relu',
               uncertainty: bool = False,
               residual: bool = False,
               **kwargs) -> None:
    """Create a MultitaskRegressor.

    In addition to the following arguments, this class also accepts all the keywork arguments
    from TensorGraph.

    Parameters
    ----------
    n_tasks: int
      number of tasks
    n_features: int
      number of features
    layer_sizes: list
      the size of each dense layer in the network.  The length of this list determines the number of layers.
    weight_init_stddevs: list or float
      the standard deviation of the distribution to use for weight initialization of each layer.  The length
      of this list should equal len(layer_sizes)+1.  The final element corresponds to the output layer.
      Alternatively this may be a single value instead of a list, in which case the same value is used for every layer.
    bias_init_consts: list or float
      the value to initialize the biases in each layer to.  The length of this list should equal len(layer_sizes)+1.
      The final element corresponds to the output layer.  Alternatively this may be a single value instead of a list,
      in which case the same value is used for every layer.
    weight_decay_penalty: float
      the magnitude of the weight decay penalty to use
    weight_decay_penalty_type: str
      the type of penalty to use for weight decay, either 'l1' or 'l2'
    dropouts: list or float
      the dropout probablity to use for each layer.  The length of this list should equal len(layer_sizes).
      Alternatively this may be a single value instead of a list, in which case the same value is used for every layer.
    activation_fns: list or object
      the PyTorch activation function to apply to each layer.  The length of this list should equal
      len(layer_sizes).  Alternatively this may be a single value instead of a list, in which case the
      same value is used for every layer.  Standard activation functions from torch.nn.functional can be specified by name.
    uncertainty: bool
      if True, include extra outputs and loss terms to enable the uncertainty
      in outputs to be predicted
    residual: bool
      if True, the model will be composed of pre-activation residual blocks instead
      of a simple stack of dense layers.
    """
    self.n_tasks = n_tasks
    self.n_features = n_features
    n_layers = len(layer_sizes)
    if not isinstance(weight_init_stddevs, SequenceCollection):
      weight_init_stddevs = [weight_init_stddevs] * (n_layers + 1)
    if not isinstance(bias_init_consts, SequenceCollection):
      bias_init_consts = [bias_init_consts] * (n_layers + 1)
    if not isinstance(dropouts, SequenceCollection):
      dropouts = [dropouts] * n_layers
    if isinstance(activation_fns,
                  str) or not isinstance(activation_fns, SequenceCollection):
      activation_fns = [activation_fns] * n_layers
    activation_fns = [get_activation(f) for f in activation_fns]
    if uncertainty:
      if any(d == 0.0 for d in dropouts):
        raise ValueError(
            'Dropout must be included in every layer to predict uncertainty')

    # Define the PyTorch Module that implements the model.

    class PytorchImpl(torch.nn.Module):

      def __init__(self):
        super(PytorchImpl, self).__init__()
        self.layers = torch.nn.ModuleList()
        prev_size = n_features
        for size, weight_stddev, bias_const in zip(
            layer_sizes, weight_init_stddevs, bias_init_consts):
          layer = torch.nn.Linear(prev_size, size)
          torch.nn.init.normal_(layer.weight, 0, weight_stddev)
          torch.nn.init.constant_(layer.bias, bias_const)
          self.layers.append(layer)
          prev_size = size
        self.output_layer = torch.nn.Linear(prev_size, n_tasks)
        torch.nn.init.normal_(self.output_layer.weight, 0,
                              weight_init_stddevs[-1])
        torch.nn.init.constant_(self.output_layer.bias, bias_init_consts[-1])
        self.uncertainty_layer = torch.nn.Linear(prev_size, n_tasks)
        torch.nn.init.normal_(self.output_layer.weight, 0,
                              weight_init_stddevs[-1])
        torch.nn.init.constant_(self.output_layer.bias, 0)

      def forward(self, inputs):
        x, dropout_switch = inputs
        prev_size = n_features
        next_activation = None
        for size, layer, dropout, activation_fn, in zip(
            layer_sizes, self.layers, dropouts, activation_fns):
          y = x
          if next_activation is not None:
            y = next_activation(x)
          y = layer(y)
          if dropout > 0.0 and dropout_switch:
            y = F.dropout(y, dropout)
          if residual and prev_size == size:
            y = x + y
          x = y
          prev_size = size
          next_activation = activation_fn
        if next_activation is not None:
          y = next_activation(y)
        neural_fingerprint = y
        output = torch.reshape(self.output_layer(y), (-1, n_tasks, 1))
        if uncertainty:
          log_var = torch.reshape(self.uncertainty_layer(y), (-1, n_tasks, 1))
          var = torch.exp(log_var)
          return (output, var, output, log_var, neural_fingerprint)
        else:
          return (output, neural_fingerprint)

    model = PytorchImpl()
    regularization_loss: Optional[Callable]
    if weight_decay_penalty != 0:
      weights = [layer.weight for layer in model.layers]
      if weight_decay_penalty_type == 'l1':
        regularization_loss = lambda: weight_decay_penalty * torch.sum(torch.stack([torch.abs(w).sum() for w in weights]))
      else:
        regularization_loss = lambda: weight_decay_penalty * torch.sum(torch.stack([torch.square(w).sum() for w in weights]))
    else:
      regularization_loss = None
    loss: Union[dc.models.losses.Loss, LossFn]
    if uncertainty:
      output_types = ['prediction', 'variance', 'loss', 'loss', 'embedding']

      def loss(outputs, labels, weights):
        output, labels = _make_pytorch_shapes_consistent(outputs[0], labels[0])
        diff = labels - output
        losses = diff * diff / torch.exp(outputs[1]) + outputs[1]
        w = weights[0]
        if len(w.shape) < len(losses.shape):
          if isinstance(w, torch.Tensor):
            shape = tuple(w.shape)
          else:
            shape = w.shape
          shape = tuple(-1 if x is None else x for x in shape)
          w = w.reshape(shape + (1,) * (len(losses.shape) - len(w.shape)))

        loss = losses * w
        loss = loss.mean()
        if regularization_loss is not None:
          loss += regularization_loss()
        return loss
    else:
      output_types = ['prediction', 'embedding']
      loss = dc.models.losses.L2Loss()
    super(MultitaskRegressor, self).__init__(
        model,
        loss,
        output_types=output_types,
        regularization_loss=regularization_loss,
        **kwargs)
Exemple #28
0
    def _build_fused(self, hp):
        n_input = hp['n_input']
        n_rnn = hp['n_rnn']
        n_output = hp['n_output']

        # Activation functions
        if hp['activation'] == 'power':
            f_act = lambda x: torch.square(F.relu(x))
        elif hp['activation'] == 'retanh':
            f_act = lambda x: torch.tanh(F.relu(x))
        elif hp['activation'] == 'relu+':
            f_act = lambda x: nn.relu(x + init.constant_(1.))
        else:
            f_act = getattr(F, hp['activation'])

        # Recurrent activity
        if hp['rnn_type'] == 'LeakyRNN':
            n_in_rnn = self.x.get_shape().as_list()[-1]
            cell = LeakyRNNCell(n_rnn,
                                n_in_rnn,
                                hp['alpha'],
                                sigma_rec=hp['sigma_rec'],
                                activation=hp['activation'],
                                w_rec_init=hp['w_rec_init'],
                                rng=self.rng)
        elif hp['rnn_type'] == 'LeakyGRU':
            cell = LeakyGRUCell(n_rnn,
                                hp['alpha'],
                                sigma_rec=hp['sigma_rec'],
                                activation=f_act)
        elif hp['rnn_type'] == 'LSTM':
            cell = tf.contrib.rnn.LSTMCell(n_rnn, activation=f_act)

        elif hp['rnn_type'] == 'GRU':
            cell = tf.contrib.rnn.GRUCell(n_rnn, activation=f_act)
        else:
            raise NotImplementedError("""rnn_type must be one of LeakyRNN,
                    LeakyGRU, EILeakyGRU, LSTM, GRU
                    """)

        # Dynamic rnn with time major
        self.h, states = rnn.dynamic_rnn(cell,
                                         self.x,
                                         dtype=torch.float32,
                                         time_major=True)

        # Output
        with tf.variable_scope("output"):
            # Using default initialization `glorot_uniform_initializer`
            w_out = tf.get_variable('weights', [n_rnn, n_output],
                                    dtype=tf.float32)
            b_out = tf.get_variable('biases', [n_output],
                                    dtype=tf.float32,
                                    initializer=tf.constant_initializer(
                                        0.0, dtype=tf.float32))

        h_shaped = tf.reshape(self.h, (-1, n_rnn))
        y_shaped = tf.reshape(self.y, (-1, n_output))
        # y_hat_ shape (n_time*n_batch, n_unit)
        y_hat_ = tf.matmul(h_shaped, w_out) + b_out
        if hp['loss_type'] == 'lsq':
            # Least-square loss
            y_hat = tf.sigmoid(y_hat_)
            self.cost_lsq = tf.reduce_mean(
                tf.square((y_shaped - y_hat) * self.c_mask))
        else:
            y_hat = tf.nn.softmax(y_hat_)
            # Cross-entropy loss
            self.cost_lsq = tf.reduce_mean(
                self.c_mask * tf.nn.softmax_cross_entropy_with_logits(
                    labels=y_shaped, logits=y_hat_))

        self.y_hat = tf.reshape(y_hat, (-1, tf.shape(self.h)[1], n_output))
        y_hat_fix, y_hat_ring = tf.split(self.y_hat, [1, n_output - 1],
                                         axis=-1)
        self.y_hat_loc = tf_popvec(y_hat_ring)
 def l2_normalize(self, feat):
     norm = torch.sqrt(torch.sum(torch.square(feat), dim=1))
     return torch.div(feat.t(), norm.t()).t()