Exemple #1
0
def train(scriptArgs):
    # load args from file
    args = loadCheckpoint(scriptArgs.json,
                          map_location=lambda storage, loc: storage.cuda())

    # terminate if validAcc exists
    _validAccKey = TrainWeights.validAccKey
    if hasattr(args, _validAccKey):
        print('[{}] exists'.format(_validAccKey))
        exit(0)

    # no need to save model random weights
    args.saveRandomWeights = False

    # update args parameters
    args.seed = datetime.now().microsecond
    # update cudnn parameters
    random.seed(args.seed)
    set_device(scriptArgs.gpu[0])
    cudnn.benchmark = True
    torch_manual_seed(args.seed)
    cudnn.enabled = True
    cuda_manual_seed(args.seed)
    # copy scriptArgs values to args
    for k, v in vars(scriptArgs).items():
        setattr(args, k, v)

    # load model flops
    _modelFlopsPathKey = BaseNet.modelFlopsPathKey()
    modelFlopsPath = getattr(args, _modelFlopsPathKey)
    if modelFlopsPath and exists(modelFlopsPath):
        setattr(args, BaseNet.modelFlopsKey(), loadCheckpoint(modelFlopsPath))

    folderNotExists = not exists(args.save)
    if folderNotExists:
        create_exp_dir(args.save)
        # init logger
        logger = HtmlLogger(args.save, 'log')

        if scriptArgs.individual:
            args.width = []

        alphasRegime = OptimalRegime(args, logger)
        # train according to chosen regime
        alphasRegime.train()

    return folderNotExists
def make_results_reproducible(model_is_convolutional: bool = False) -> None:
    """
    Make the subsequent instructions produce purely deterministic outputs
    by fixing all the relevant seeds:
    """
    random_seed(0)
    _ = numpy_seed(0)
    _ = torch_manual_seed(0)

    # since GPU computations may introduce additional stochasticity with
    # their convolutional operation optimizations:
    if model_is_convolutional:
        if cuda_is_available():
            # disabling benchmarking and choosing among convolution operation
            # implementation alternatives, which is stochastic based due to
            # noise and hardware:
            cudnn.benchmark = False
            # ansuring deterministic algorithms for colvolutional operations
            # are employed:
            cudnn.deterministic = True
Exemple #3
0
def seed_everything(seed=1234):
    random_seed(seed)
    torch_manual_seed(seed)
Exemple #4
0
        print('no gpu device available')
        exit(1)

    # update GPUs list
    if type(args.gpu) is not 'None':
        args.gpu = [int(i) for i in args.gpu.split(',')]

    args.device = 'cuda:' + str(args.gpu[0])

    # CUDA
    if args.seed is None:
        args.seed = random.randint(1, 10000)
    random.seed(args.seed)
    set_device(args.gpu[0])
    cudnn.benchmark = True
    torch_manual_seed(args.seed)
    cudnn.enabled = True
    cuda_manual_seed(args.seed)

    # create folder
    baseFolder = dirname(abspath(getfile(currentframe())))
    args.time = time.strftime("%Y%m%d-%H%M%S")
    args.folderName = '{}_{}_{}_{}'.format(args.model, args.actBitwidth,
                                           args.weightBitwidth, args.time)
    args.save = '{}/results/{}'.format(baseFolder, args.folderName)
    if not os.path.exists(args.save):
        os.makedirs(args.save)

    # save args to JSON
    saveArgsToJSON(args)
Exemple #5
0
def G(scriptArgs):
    # load args from file
    args = loadCheckpoint(scriptArgs.json,
                          map_location=lambda storage, loc: storage.cuda())

    # # ========================== DEBUG ===============================
    # print(args)
    # # extract args JSON folder path
    # folderName = path.dirname(scriptArgs.json)
    # # results folder is JSON filename
    # jsonFileName = path.basename(scriptArgs.json)
    # # set results folder path
    # args.save = '{}/{}'.format(folderName, jsonFileName[:-5])
    # print('====')
    # print(args.save)
    # create_exp_dir(args.save)
    # # init logger
    # logger = HtmlLogger(args.save, 'log')
    # # init project base folder
    # baseFolder = path.dirname(path.abspath(getfile(currentframe())))  # script directory
    # # set pre-trained path
    # preTrainedKey = '[(32, 32)],[{}]'.format(args.model)
    # preTrainedFileName = 'model.updated_stats.pth.tar'
    # args.pre_trained = '{}/../pre_trained/{}/train_portion_1.0/{}/train/{}'.format(baseFolder, args.dataset, preTrainedKey, preTrainedFileName)
    # print(args.pre_trained)
    #
    # # build model for uniform distribution of bits
    # from cnn.utils import models
    # modelClass = models.__dict__[args.model]
    # # init model
    # model = modelClass(args)
    # model = model.cuda()
    # # load pre-trained full-precision model
    # args.loadedOpsWithDiffWeights = model.loadPreTrained(args.pre_trained, logger, args.gpu[0])
    #
    # print(args)
    # setattr(args, 'Validation acc', 33.4)
    # setattr(args, 'Validation loss', 1.347)
    #
    # saveCheckpoint(args, scriptArgs.json)
    # # move checkpoint to finished jobs folder
    # newDestination = scriptArgs.json
    # if scriptArgs.dstFolder is not None:
    #     newDestination = '{}/{}'.format(scriptArgs.dstFolder, jsonFileName)
    #     rename(scriptArgs.json, newDestination)
    #
    # print(args)
    # print('DDone !')
    # from time import sleep
    # sleep(60)
    # exit(0)
    # # ================================================================

    args.seed = datetime.now().microsecond
    # update cudnn parameters
    random.seed(args.seed)
    set_device(scriptArgs.gpu[0])
    cudnn.benchmark = True
    torch_manual_seed(args.seed)
    cudnn.enabled = True
    cuda_manual_seed(args.seed)
    # update values
    args.train_portion = 1.0
    args.batch_size = 250
    args.gpu = scriptArgs.gpu
    args.data = scriptArgs.data
    # extract args JSON folder path
    folderName = path.dirname(scriptArgs.json)
    # results folder is JSON filename
    jsonFileName = path.basename(scriptArgs.json)
    # set results folder path
    args.save = '{}/{}'.format(folderName, jsonFileName[:-5])
    if not path.exists(args.save):
        create_exp_dir(args.save)
        # init logger
        logger = HtmlLogger(args.save, 'log')
        # log command line
        logger.addInfoTable(title='Command line',
                            rows=[[' '.join(argv)],
                                  ['PID:[{}]'.format(getpid())],
                                  ['Hostname', gethostname()],
                                  [
                                      'CUDA_VISIBLE_DEVICES',
                                      environ.get('CUDA_VISIBLE_DEVICES')
                                  ]])
        # init project base folder
        baseFolder = path.dirname(path.abspath(getfile(
            currentframe())))  # script directory
        # set pre-trained path
        preTrainedKey = '[(32, 32)],[{}]'.format(args.model)
        preTrainedFileName = 'model.updated_stats.pth.tar'
        args.pre_trained = '{}/../pre_trained/{}/train_portion_1.0/{}/{}'.format(
            baseFolder, args.dataset, preTrainedKey, preTrainedFileName)
        # args.pre_trained = scriptArgs.pp
        # check path exists
        if path.exists(args.pre_trained):
            alphasRegime = OptimalModel(args, logger)
            # train according to chosen regime
            alphasRegime.train()
            # best_prec1, best_valid_loss are now part of args, therefore we have to save args again, the sender will be able to read these values
            saveCheckpoint(args, scriptArgs.json)
            # move checkpoint to finished jobs folder
            newDestination = scriptArgs.json
            if scriptArgs.dstFolder is not None:
                newDestination = '{}/{}'.format(scriptArgs.dstFolder,
                                                jsonFileName)
                rename(scriptArgs.json, newDestination)

            print(args)
            logger.addInfoToDataTable(
                'Saved args to [{}]'.format(newDestination))
            logger.addInfoToDataTable('Done !')