def forward(
            self,  # type: ignore
            question: Dict[str, torch.LongTensor],
            passage: Dict[str, torch.LongTensor],
            span_start: torch.IntTensor = None,
            span_end: torch.IntTensor = None,
            p1_answer_marker: torch.IntTensor = None,
            p2_answer_marker: torch.IntTensor = None,
            p3_answer_marker: torch.IntTensor = None,
            yesno_list: torch.IntTensor = None,
            followup_list: torch.IntTensor = None,
            metadata: List[Dict[str, Any]] = None) -> Dict[str, torch.Tensor]:
        # pylint: disable=arguments-differ
        """
        Parameters
        ----------
        question : Dict[str, torch.LongTensor]
            From a ``TextField``.
        passage : Dict[str, torch.LongTensor]
            From a ``TextField``.  The model assumes that this passage contains the answer to the
            question, and predicts the beginning and ending positions of the answer within the
            passage.
        span_start : ``torch.IntTensor``, optional
            From an ``IndexField``.  This is one of the things we are trying to predict - the
            beginning position of the answer with the passage.  This is an `inclusive` token index.
            If this is given, we will compute a loss that gets included in the output dictionary.
        span_end : ``torch.IntTensor``, optional
            From an ``IndexField``.  This is one of the things we are trying to predict - the
            ending position of the answer with the passage.  This is an `inclusive` token index.
            If this is given, we will compute a loss that gets included in the output dictionary.
        p1_answer_marker : ``torch.IntTensor``, optional
            This is one of the inputs, but only when num_context_answers > 0.
            This is a tensor that has a shape [batch_size, max_qa_count, max_passage_length].
            Most passage token will have assigned 'O', except the passage tokens belongs to the previous answer
            in the dialog, which will be assigned labels such as <1_start>, <1_in>, <1_end>.
            For more details, look into dataset_readers/util/make_reading_comprehension_instance_quac
        p2_answer_marker :  ``torch.IntTensor``, optional
            This is one of the inputs, but only when num_context_answers > 1.
            It is similar to p1_answer_marker, but marking previous previous answer in passage.
        p3_answer_marker :  ``torch.IntTensor``, optional
            This is one of the inputs, but only when num_context_answers > 2.
            It is similar to p1_answer_marker, but marking previous previous previous answer in passage.
        yesno_list :  ``torch.IntTensor``, optional
            This is one of the outputs that we are trying to predict.
            Three way classification (the yes/no/not a yes no question).
        followup_list :  ``torch.IntTensor``, optional
            This is one of the outputs that we are trying to predict.
            Three way classification (followup / maybe followup / don't followup).
        metadata : ``List[Dict[str, Any]]``, optional
            If present, this should contain the question ID, original passage text, and token
            offsets into the passage for each instance in the batch.  We use this for computing
            official metrics using the official SQuAD evaluation script.  The length of this list
            should be the batch size, and each dictionary should have the keys ``id``,
            ``original_passage``, and ``token_offsets``.  If you only want the best span string and
            don't care about official metrics, you can omit the ``id`` key.

        Returns
        -------
        An output dictionary consisting of the followings.
        Each of the followings is a nested list because first iterates over dialog, then questions in dialog.

        qid : List[List[str]]
            A list of list, consisting of question ids.
        followup : List[List[int]]
            A list of list, consisting of continuation marker prediction index.
            (y :yes, m: maybe follow up, n: don't follow up)
        yesno : List[List[int]]
            A list of list, consisting of affirmation marker prediction index.
            (y :yes, x: not a yes/no question, n: np)
        best_span_str : List[List[str]]
            If sufficient metadata was provided for the instances in the batch, we also return the
            string from the original passage that the model thinks is the best answer to the
            question.
        loss : torch.FloatTensor, optional
            A scalar loss to be optimised.
        """
        batch_size, max_qa_count, max_q_len, _ = question[
            'token_characters'].size()
        total_qa_count = batch_size * max_qa_count
        qa_mask = torch.ge(followup_list, 0).view(total_qa_count)
        embedded_question = self._text_field_embedder(question,
                                                      num_wrapping_dims=1)
        embedded_question = embedded_question.reshape(
            total_qa_count, max_q_len,
            self._text_field_embedder.get_output_dim())
        embedded_question = self._variational_dropout(embedded_question)
        embedded_passage = self._variational_dropout(
            self._text_field_embedder(passage))
        passage_length = embedded_passage.size(1)

        question_mask = util.get_text_field_mask(question,
                                                 num_wrapping_dims=1).float()
        question_mask = question_mask.reshape(total_qa_count, max_q_len)
        passage_mask = util.get_text_field_mask(passage).float()

        repeated_passage_mask = passage_mask.unsqueeze(1).repeat(
            1, max_qa_count, 1)
        repeated_passage_mask = repeated_passage_mask.view(
            total_qa_count, passage_length)

        if self._num_context_answers > 0:
            # Encode question turn number inside the dialog into question embedding.
            question_num_ind = util.get_range_vector(
                max_qa_count, util.get_device_of(embedded_question))
            question_num_ind = question_num_ind.unsqueeze(-1).repeat(
                1, max_q_len)
            question_num_ind = question_num_ind.unsqueeze(0).repeat(
                batch_size, 1, 1)
            question_num_ind = question_num_ind.reshape(
                total_qa_count, max_q_len)
            question_num_marker_emb = self._question_num_marker(
                question_num_ind)
            embedded_question = torch.cat(
                [embedded_question, question_num_marker_emb], dim=-1)

            # Encode the previous answers in passage embedding.
            repeated_embedded_passage = embedded_passage.unsqueeze(1).repeat(1, max_qa_count, 1, 1). \
                view(total_qa_count, passage_length, self._text_field_embedder.get_output_dim())
            # batch_size * max_qa_count, passage_length, word_embed_dim
            p1_answer_marker = p1_answer_marker.view(total_qa_count,
                                                     passage_length)
            p1_answer_marker_emb = self._prev_ans_marker(p1_answer_marker)
            repeated_embedded_passage = torch.cat(
                [repeated_embedded_passage, p1_answer_marker_emb], dim=-1)
            if self._num_context_answers > 1:
                p2_answer_marker = p2_answer_marker.view(
                    total_qa_count, passage_length)
                p2_answer_marker_emb = self._prev_ans_marker(p2_answer_marker)
                repeated_embedded_passage = torch.cat(
                    [repeated_embedded_passage, p2_answer_marker_emb], dim=-1)
                if self._num_context_answers > 2:
                    p3_answer_marker = p3_answer_marker.view(
                        total_qa_count, passage_length)
                    p3_answer_marker_emb = self._prev_ans_marker(
                        p3_answer_marker)
                    repeated_embedded_passage = torch.cat(
                        [repeated_embedded_passage, p3_answer_marker_emb],
                        dim=-1)

            repeated_encoded_passage = self._variational_dropout(
                self._phrase_layer(repeated_embedded_passage,
                                   repeated_passage_mask))
        else:
            encoded_passage = self._variational_dropout(
                self._phrase_layer(embedded_passage, passage_mask))
            repeated_encoded_passage = encoded_passage.unsqueeze(1).repeat(
                1, max_qa_count, 1, 1)
            repeated_encoded_passage = repeated_encoded_passage.view(
                total_qa_count, passage_length, self._encoding_dim)

        encoded_question = self._variational_dropout(
            self._phrase_layer(embedded_question, question_mask))

        # Shape: (batch_size * max_qa_count, passage_length, question_length)
        passage_question_similarity = self._matrix_attention(
            repeated_encoded_passage, encoded_question)
        # Shape: (batch_size * max_qa_count, passage_length, question_length)
        passage_question_attention = util.masked_softmax(
            passage_question_similarity, question_mask)
        # Shape: (batch_size * max_qa_count, passage_length, encoding_dim)
        passage_question_vectors = util.weighted_sum(
            encoded_question, passage_question_attention)

        # We replace masked values with something really negative here, so they don't affect the
        # max below.
        masked_similarity = util.replace_masked_values(
            passage_question_similarity, question_mask.unsqueeze(1), -1e7)

        question_passage_similarity = masked_similarity.max(
            dim=-1)[0].squeeze(-1)
        question_passage_attention = util.masked_softmax(
            question_passage_similarity, repeated_passage_mask)
        # Shape: (batch_size * max_qa_count, encoding_dim)
        question_passage_vector = util.weighted_sum(
            repeated_encoded_passage, question_passage_attention)
        tiled_question_passage_vector = question_passage_vector.unsqueeze(
            1).expand(total_qa_count, passage_length, self._encoding_dim)

        # Shape: (batch_size * max_qa_count, passage_length, encoding_dim * 4)
        final_merged_passage = torch.cat([
            repeated_encoded_passage, passage_question_vectors,
            repeated_encoded_passage * passage_question_vectors,
            repeated_encoded_passage * tiled_question_passage_vector
        ],
                                         dim=-1)

        final_merged_passage = F.relu(self._merge_atten(final_merged_passage))

        residual_layer = self._variational_dropout(
            self._residual_encoder(final_merged_passage,
                                   repeated_passage_mask))
        self_attention_matrix = self._self_attention(residual_layer,
                                                     residual_layer)

        mask = repeated_passage_mask.reshape(total_qa_count, passage_length, 1) \
               * repeated_passage_mask.reshape(total_qa_count, 1, passage_length)
        self_mask = torch.eye(passage_length,
                              passage_length,
                              device=self_attention_matrix.device)
        self_mask = self_mask.reshape(1, passage_length, passage_length)
        mask = mask * (1 - self_mask)

        self_attention_probs = util.masked_softmax(self_attention_matrix, mask)

        # (batch, passage_len, passage_len) * (batch, passage_len, dim) -> (batch, passage_len, dim)
        self_attention_vecs = torch.matmul(self_attention_probs,
                                           residual_layer)
        self_attention_vecs = torch.cat([
            self_attention_vecs, residual_layer,
            residual_layer * self_attention_vecs
        ],
                                        dim=-1)
        residual_layer = F.relu(
            self._merge_self_attention(self_attention_vecs))

        final_merged_passage = final_merged_passage + residual_layer
        # batch_size * maxqa_pair_len * max_passage_len * 200
        final_merged_passage = self._variational_dropout(final_merged_passage)
        start_rep = self._span_start_encoder(final_merged_passage,
                                             repeated_passage_mask)
        span_start_logits = self._span_start_predictor(start_rep).squeeze(-1)

        end_rep = self._span_end_encoder(
            torch.cat([final_merged_passage, start_rep], dim=-1),
            repeated_passage_mask)
        span_end_logits = self._span_end_predictor(end_rep).squeeze(-1)

        span_yesno_logits = self._span_yesno_predictor(end_rep).squeeze(-1)
        span_followup_logits = self._span_followup_predictor(end_rep).squeeze(
            -1)

        span_start_logits = util.replace_masked_values(span_start_logits,
                                                       repeated_passage_mask,
                                                       -1e7)
        # batch_size * maxqa_len_pair, max_document_len
        span_end_logits = util.replace_masked_values(span_end_logits,
                                                     repeated_passage_mask,
                                                     -1e7)

        best_span = self._get_best_span_yesno_followup(span_start_logits,
                                                       span_end_logits,
                                                       span_yesno_logits,
                                                       span_followup_logits,
                                                       self._max_span_length)

        output_dict: Dict[str, Any] = {}

        # Compute the loss.
        if span_start is not None:
            loss = nll_loss(util.masked_log_softmax(span_start_logits,
                                                    repeated_passage_mask),
                            span_start.view(-1),
                            ignore_index=-1)
            self._span_start_accuracy(span_start_logits,
                                      span_start.view(-1),
                                      mask=qa_mask)
            loss += nll_loss(util.masked_log_softmax(span_end_logits,
                                                     repeated_passage_mask),
                             span_end.view(-1),
                             ignore_index=-1)
            self._span_end_accuracy(span_end_logits,
                                    span_end.view(-1),
                                    mask=qa_mask)
            self._span_accuracy(best_span[:, 0:2],
                                torch.stack([span_start, span_end],
                                            -1).view(total_qa_count, 2),
                                mask=qa_mask.unsqueeze(1).expand(-1, 2).long())
            # add a select for the right span to compute loss
            gold_span_end_loc = []
            span_end = span_end.view(
                total_qa_count).squeeze().data.cpu().numpy()
            for i in range(0, total_qa_count):
                gold_span_end_loc.append(
                    max(span_end[i] * 3 + i * passage_length * 3, 0))
                gold_span_end_loc.append(
                    max(span_end[i] * 3 + i * passage_length * 3 + 1, 0))
                gold_span_end_loc.append(
                    max(span_end[i] * 3 + i * passage_length * 3 + 2, 0))
            gold_span_end_loc = span_start.new(gold_span_end_loc)

            pred_span_end_loc = []
            for i in range(0, total_qa_count):
                pred_span_end_loc.append(
                    max(best_span[i][1] * 3 + i * passage_length * 3, 0))
                pred_span_end_loc.append(
                    max(best_span[i][1] * 3 + i * passage_length * 3 + 1, 0))
                pred_span_end_loc.append(
                    max(best_span[i][1] * 3 + i * passage_length * 3 + 2, 0))
            predicted_end = span_start.new(pred_span_end_loc)

            _yesno = span_yesno_logits.view(-1).index_select(
                0, gold_span_end_loc).view(-1, 3)
            _followup = span_followup_logits.view(-1).index_select(
                0, gold_span_end_loc).view(-1, 3)
            loss += nll_loss(F.log_softmax(_yesno, dim=-1),
                             yesno_list.view(-1),
                             ignore_index=-1)
            loss += nll_loss(F.log_softmax(_followup, dim=-1),
                             followup_list.view(-1),
                             ignore_index=-1)

            _yesno = span_yesno_logits.view(-1).index_select(
                0, predicted_end).view(-1, 3)
            _followup = span_followup_logits.view(-1).index_select(
                0, predicted_end).view(-1, 3)
            self._span_yesno_accuracy(_yesno,
                                      yesno_list.view(-1),
                                      mask=qa_mask)
            self._span_followup_accuracy(_followup,
                                         followup_list.view(-1),
                                         mask=qa_mask)
            output_dict["loss"] = loss

        # Compute F1 and preparing the output dictionary.
        output_dict['best_span_str'] = []
        output_dict['qid'] = []
        output_dict['followup'] = []
        output_dict['yesno'] = []
        best_span_cpu = best_span.detach().cpu().numpy()
        for i in range(batch_size):
            passage_str = metadata[i]['original_passage']
            offsets = metadata[i]['token_offsets']
            f1_score = 0.0
            per_dialog_best_span_list = []
            per_dialog_yesno_list = []
            per_dialog_followup_list = []
            per_dialog_query_id_list = []
            for per_dialog_query_index, (iid, answer_texts) in enumerate(
                    zip(metadata[i]["instance_id"],
                        metadata[i]["answer_texts_list"])):
                predicted_span = tuple(best_span_cpu[i * max_qa_count +
                                                     per_dialog_query_index])

                start_offset = offsets[predicted_span[0]][0]
                end_offset = offsets[predicted_span[1]][1]

                yesno_pred = predicted_span[2]
                followup_pred = predicted_span[3]
                per_dialog_yesno_list.append(yesno_pred)
                per_dialog_followup_list.append(followup_pred)
                per_dialog_query_id_list.append(iid)

                best_span_string = passage_str[start_offset:end_offset]
                per_dialog_best_span_list.append(best_span_string)
                if answer_texts:
                    if len(answer_texts) > 1:
                        t_f1 = []
                        # Compute F1 over N-1 human references and averages the scores.
                        for answer_index in range(len(answer_texts)):
                            idxes = list(range(len(answer_texts)))
                            idxes.pop(answer_index)
                            refs = [answer_texts[z] for z in idxes]
                            t_f1.append(
                                squad_eval.metric_max_over_ground_truths(
                                    squad_eval.f1_score, best_span_string,
                                    refs))
                        f1_score = 1.0 * sum(t_f1) / len(t_f1)
                    else:
                        f1_score = squad_eval.metric_max_over_ground_truths(
                            squad_eval.f1_score, best_span_string,
                            answer_texts)
                self._official_f1(100 * f1_score)
            output_dict['qid'].append(per_dialog_query_id_list)
            output_dict['best_span_str'].append(per_dialog_best_span_list)
            output_dict['yesno'].append(per_dialog_yesno_list)
            output_dict['followup'].append(per_dialog_followup_list)
        return output_dict
Exemple #2
0
    def forward(
            self,
            sentence: Dict[str, torch.LongTensor],
            column: Dict[str, torch.LongTensor],
            passage: Dict[str, torch.LongTensor],
            col_start_idx: torch.IntTensor = None,
            col_end_idx: torch.IntTensor = None,
            val_start_idx: torch.IntTensor = None,
            val_end_idx: torch.IntTensor = None,
            yesno_list: torch.IntTensor = None,
            metadata: List[Dict[str, Any]] = None) -> Dict[str, torch.Tensor]:

        ## 字数
        batch_size, max_sent_count, max_sent_len = sentence['bert'].size()

        ## 中文分词Token数
        _, _, max_sent_token_len = sentence['bert-offsets'].size()

        # # total_qa_count * max_q_len * encoding_dim
        total_sent_count = batch_size * max_sent_count
        yesno_mask = torch.ge(yesno_list, 0).view(total_sent_count)

        # embedded_question = embedded_question.reshape(total_qa_count, max_q_len, self._text_field_embedder.get_output_dim())
        embedded_sentence = self._embedder(sentence['bert']).reshape(
            total_sent_count, max_sent_len, self._embedder.get_output_dim())
        embedded_passage = self._embedder(passage['bert'])
        embedded_column = self._embedder(column['bert'])

        sentence_mask = util.get_text_field_mask(
            sentence, num_wrapping_dims=1).float().squeeze(1)

        # sentence_mask = sentence_mask.reshape(total_sent_count, max_sent_len - 2)
        # sentence_mask = sentence_mask.reshape(total_sent_count, max_sent_len)
        # sentence_mask = sentence_mask.new_ones(batch_size, max_sent_count, max_sent_len)
        # sentence_mask = [[[1] + s + [1]] for s in sentence_mask]
        column_mask = util.get_text_field_mask(column).float()

        # column_mask = column_mask.reshape(total_sent_count, max_sent_len)
        # column_mask = column_mask.new_ones(batch_col_size, max_col_count, max_col_len)
        passage_mask = util.get_text_field_mask(passage).float()

        encode_passage = self._passage_BiLSTM(embedded_passage, passage_mask)
        encode_sentence = self._sentence_BiLSTM(embedded_sentence,
                                                sentence_mask)
        encode_column = self._columns_BiLSTM(embedded_column, column_mask)

        passage_length = encode_passage.size(1)
        column_length = encode_column.size(1)

        projected_passage = self.relu(self.projected_layer(encode_passage))
        projected_sentence = self.relu(self.projected_layer(encode_sentence))
        projected_column = self.relu(self.projected_layer(encode_column))

        encoded_passage = self._variational_dropout(projected_passage)
        encode_sentence = self._variational_dropout(projected_sentence)
        encode_column = self._variational_dropout(projected_column)

        # repeated_encode_column = encode_column.repeat(1, max_col_count, 1, 1)

        repeated_encoded_passage = encoded_passage.unsqueeze(1).repeat(
            1, max_sent_count, 1, 1)
        repeated_encoded_passage = repeated_encoded_passage.view(
            total_sent_count, passage_length, self._encoding_dim)

        repeated_passage_mask = passage_mask.unsqueeze(1).repeat(
            1, max_sent_count, 1)
        repeated_passage_mask = repeated_passage_mask.view(
            total_sent_count, passage_length)

        repeated_encode_column = encode_column.unsqueeze(1).repeat(
            1, max_sent_count, 1, 1)
        repeated_encode_column = repeated_encode_column.view(
            total_sent_count, column_length, self._encoding_dim)

        repeated_column_mask = column_mask.unsqueeze(1).repeat(
            1, max_sent_count, 1)
        repeated_column_mask = repeated_column_mask.view(
            total_sent_count, column_length)

        ## S2C
        s = torch.bmm(encode_sentence, repeated_encode_column.transpose(2, 1))
        alpha = util.masked_softmax(s,
                                    sentence_mask.unsqueeze(2).expand(
                                        s.size()),
                                    dim=1)
        aligned_s2c = torch.bmm(alpha.transpose(2, 1), encode_sentence)

        ## P2C
        p = torch.bmm(repeated_encoded_passage,
                      repeated_encode_column.transpose(2, 1))
        beta = util.masked_softmax(p,
                                   repeated_passage_mask.unsqueeze(2).expand(
                                       p.size()),
                                   dim=1)
        aligned_p2c = torch.bmm(beta.transpose(2, 1), repeated_encoded_passage)

        ## C2S
        alpha1 = util.masked_softmax(s,
                                     repeated_column_mask.unsqueeze(1).expand(
                                         s.size()),
                                     dim=1)
        aligned_c2s = torch.bmm(alpha1, repeated_encode_column)

        ## C2P
        beta1 = util.masked_softmax(p,
                                    repeated_column_mask.unsqueeze(1).expand(
                                        p.size()),
                                    dim=1)
        aligned_c2p = torch.bmm(beta1, repeated_encode_column)

        fused_p = self.fuse_p(repeated_encoded_passage, aligned_c2p)
        fused_s = self.fuse_s(encode_sentence, aligned_c2s)
        fused_c = self.fuse_c(aligned_p2c, aligned_s2c)

        contextual_p = self._passage_contextual(fused_p, repeated_passage_mask)
        contextual_s = self._sentence_contextual(fused_s, sentence_mask)
        contextual_c = self._columns_contextual(fused_c, repeated_column_mask)

        contextual_c2p = torch.bmm(contextual_p, contextual_c.transpose(1, 2))
        alpha2 = util.masked_softmax(contextual_c2p,
                                     repeated_column_mask.unsqueeze(1).expand(
                                         contextual_c2p.size()),
                                     dim=1)
        aligned_contextual_c2p = torch.bmm(alpha2, contextual_c)

        contextual_c2s = torch.bmm(contextual_s, contextual_c.transpose(1, 2))
        beta2 = util.masked_softmax(contextual_c2s,
                                    repeated_column_mask.unsqueeze(1).expand(
                                        contextual_c2s.size()),
                                    dim=1)
        aligned_contextual_c2s = torch.bmm(beta2, contextual_c)

        # cnt * m
        gamma = util.masked_softmax(
            self.linear_self_align(aligned_contextual_c2s).squeeze(2),
            sentence_mask,
            dim=1)
        # cnt * h
        weighted_s = torch.bmm(gamma.unsqueeze(1),
                               aligned_contextual_c2s).squeeze(1)

        # weighted_s = torch.bmm(gamma_s.unsqueeze(1), contextual_c2s).squeeze(1)

        span_start_logits = self.bilinear_layer_s(weighted_s,
                                                  aligned_contextual_c2p)
        span_end_logits = self.bilinear_layer_e(weighted_s,
                                                aligned_contextual_c2p)

        span_start_logits = util.replace_masked_values(span_start_logits,
                                                       repeated_passage_mask,
                                                       -1e7)
        span_end_logits = util.replace_masked_values(span_end_logits,
                                                     repeated_passage_mask,
                                                     -1e7)

        span_yesno_logits = self.yesno_predictor(
            torch.bmm(span_end_logits.unsqueeze(2), weighted_s.unsqueeze(1)))

        best_span = self._get_best_span(span_start_logits, span_end_logits,
                                        span_yesno_logits,
                                        self._max_span_length)
        output_dict: Dict[str, Any] = {}

        # Compute the loss for training

        if col_start_idx is not None:
            loss = nll_loss(util.masked_log_softmax(span_start_logits,
                                                    repeated_passage_mask),
                            col_start_idx.view(-1),
                            ignore_index=-1)
            self._span_start_accuracy(span_start_logits,
                                      col_start_idx.view(-1),
                                      mask=yesno_mask)
            loss += nll_loss(util.masked_log_softmax(span_end_logits,
                                                     repeated_passage_mask),
                             col_end_idx.view(-1),
                             ignore_index=-1)
            self._span_end_accuracy(span_end_logits,
                                    col_end_idx.view(-1),
                                    mask=yesno_mask)
            self._span_accuracy(best_span[:, 0:2],
                                torch.stack([col_start_idx, col_end_idx],
                                            -1).view(total_sent_count, 2),
                                mask=yesno_mask.unsqueeze(1).expand(-1,
                                                                    2).long())
            gold_span_end_loc = []
            col_end_idx = col_end_idx.view(
                total_sent_count).squeeze().data.cpu().numpy()
            for i in range(0, total_sent_count):
                # print(total_sent_count)

                gold_span_end_loc.append(
                    max(col_end_idx[i] * 3 + i * passage_length * 3, 0))
                gold_span_end_loc.append(
                    max(col_end_idx[i] * 3 + i * passage_length * 3 + 1, 0))
                gold_span_end_loc.append(
                    max(col_end_idx[i] * 3 + i * passage_length * 3 + 2, 0))
            gold_span_end_loc = col_start_idx.new(gold_span_end_loc)
            pred_span_end_loc = []
            for i in range(0, total_sent_count):
                pred_span_end_loc.append(
                    max(best_span[i][1] * 3 + i * passage_length * 3, 0))
                pred_span_end_loc.append(
                    max(best_span[i][1] * 3 + i * passage_length * 3 + 1, 0))
                pred_span_end_loc.append(
                    max(best_span[i][1] * 3 + i * passage_length * 3 + 2, 0))
            predicted_end = col_start_idx.new(pred_span_end_loc)

            _yesno = span_yesno_logits.view(-1).index_select(
                0, gold_span_end_loc).view(-1, 3)
            loss += nll_loss(torch.nn.functional.log_softmax(_yesno, dim=-1),
                             yesno_list.view(-1),
                             ignore_index=-1)

            _yesno = span_yesno_logits.view(-1).index_select(
                0, predicted_end).view(-1, 3)
            self._span_yesno_accuracy(_yesno,
                                      yesno_list.view(-1),
                                      mask=yesno_mask)
            output_dict["loss"] = loss

        output_dict['best_span_str'] = []
        output_dict['qid'] = []
        best_span_cpu = best_span.detach().cpu().numpy()
        for i in range(batch_size):
            passage_str = metadata[i]['origin_passage']
            offsets = passage['bert-offsets'][i].cpu().numpy()
            f1_score = 0.0
            per_dialog_best_span_list = []
            per_dialog_query_id_list = []
            for per_dialog_query_index, sql in enumerate(metadata[i]["sqls"]):

                predicted_span = tuple(best_span_cpu[i * max_sent_count +
                                                     per_dialog_query_index])
                start_offset = offsets[predicted_span[0]]
                end_offset = offsets[predicted_span[1]]
                per_dialog_query_id_list.append(sql)
                best_span_string = ''.join([
                    t.text for t in metadata[i]['passage_tokens']
                    [start_offset:end_offset]
                ])
                #print(best_span_string)
                per_dialog_best_span_list.append(best_span_string)

            output_dict['qid'].append(per_dialog_query_id_list)
            output_dict['best_span_str'].append(per_dialog_best_span_list)
        return output_dict
Exemple #3
0
    def forward(self,  # type: ignore
                question: Dict[str, torch.LongTensor],
                passage: Dict[str, torch.LongTensor],
                span_start: torch.IntTensor = None,
                span_end: torch.IntTensor = None,
                p1_answer_marker: torch.IntTensor = None,
                p2_answer_marker: torch.IntTensor = None,
                p3_answer_marker: torch.IntTensor = None,
                yesno_list: torch.IntTensor = None,
                followup_list: torch.IntTensor = None,
                metadata: List[Dict[str, Any]] = None) -> Dict[str, torch.Tensor]:
        # pylint: disable=arguments-differ
        """
        Parameters
        ----------
        question : Dict[str, torch.LongTensor]
            From a ``TextField``.
        passage : Dict[str, torch.LongTensor]
            From a ``TextField``.  The model assumes that this passage contains the answer to the
            question, and predicts the beginning and ending positions of the answer within the
            passage.
        span_start : ``torch.IntTensor``, optional
            From an ``IndexField``.  This is one of the things we are trying to predict - the
            beginning position of the answer with the passage.  This is an `inclusive` token index.
            If this is given, we will compute a loss that gets included in the output dictionary.
        span_end : ``torch.IntTensor``, optional
            From an ``IndexField``.  This is one of the things we are trying to predict - the
            ending position of the answer with the passage.  This is an `inclusive` token index.
            If this is given, we will compute a loss that gets included in the output dictionary.
        p1_answer_marker : ``torch.IntTensor``, optional
            This is one of the inputs, but only when num_context_answers > 0.
            This is a tensor that has a shape [batch_size, max_qa_count, max_passage_length].
            Most passage token will have assigned 'O', except the passage tokens belongs to the previous answer
            in the dialog, which will be assigned labels such as <1_start>, <1_in>, <1_end>.
            For more details, look into dataset_readers/util/make_reading_comprehension_instance_quac
        p2_answer_marker :  ``torch.IntTensor``, optional
            This is one of the inputs, but only when num_context_answers > 1.
            It is similar to p1_answer_marker, but marking previous previous answer in passage.
        p3_answer_marker :  ``torch.IntTensor``, optional
            This is one of the inputs, but only when num_context_answers > 2.
            It is similar to p1_answer_marker, but marking previous previous previous answer in passage.
        yesno_list :  ``torch.IntTensor``, optional
            This is one of the outputs that we are trying to predict.
            Three way classification (the yes/no/not a yes no question).
        followup_list :  ``torch.IntTensor``, optional
            This is one of the outputs that we are trying to predict.
            Three way classification (followup / maybe followup / don't followup).
        metadata : ``List[Dict[str, Any]]``, optional
            If present, this should contain the question ID, original passage text, and token
            offsets into the passage for each instance in the batch.  We use this for computing
            official metrics using the official SQuAD evaluation script.  The length of this list
            should be the batch size, and each dictionary should have the keys ``id``,
            ``original_passage``, and ``token_offsets``.  If you only want the best span string and
            don't care about official metrics, you can omit the ``id`` key.

        Returns
        -------
        An output dictionary consisting of the followings.
        Each of the followings is a nested list because first iterates over dialog, then questions in dialog.

        qid : List[List[str]]
            A list of list, consisting of question ids.
        followup : List[List[int]]
            A list of list, consisting of continuation marker prediction index.
            (y :yes, m: maybe follow up, n: don't follow up)
        yesno : List[List[int]]
            A list of list, consisting of affirmation marker prediction index.
            (y :yes, x: not a yes/no question, n: np)
        best_span_str : List[List[str]]
            If sufficient metadata was provided for the instances in the batch, we also return the
            string from the original passage that the model thinks is the best answer to the
            question.
        loss : torch.FloatTensor, optional
            A scalar loss to be optimised.
        """
        batch_size, max_qa_count, max_q_len, _ = question['token_characters'].size()
        total_qa_count = batch_size * max_qa_count
        qa_mask = torch.ge(followup_list, 0).view(total_qa_count)
        embedded_question = self._text_field_embedder(question, num_wrapping_dims=1)
        embedded_question = embedded_question.reshape(total_qa_count, max_q_len,
                                                      self._text_field_embedder.get_output_dim())
        embedded_question = self._variational_dropout(embedded_question)
        embedded_passage = self._variational_dropout(self._text_field_embedder(passage))
        passage_length = embedded_passage.size(1)

        question_mask = util.get_text_field_mask(question, num_wrapping_dims=1).float()
        question_mask = question_mask.reshape(total_qa_count, max_q_len)
        passage_mask = util.get_text_field_mask(passage).float()

        repeated_passage_mask = passage_mask.unsqueeze(1).repeat(1, max_qa_count, 1)
        repeated_passage_mask = repeated_passage_mask.view(total_qa_count, passage_length)

        if self._num_context_answers > 0:
            # Encode question turn number inside the dialog into question embedding.
            question_num_ind = util.get_range_vector(max_qa_count, util.get_device_of(embedded_question))
            question_num_ind = question_num_ind.unsqueeze(-1).repeat(1, max_q_len)
            question_num_ind = question_num_ind.unsqueeze(0).repeat(batch_size, 1, 1)
            question_num_ind = question_num_ind.reshape(total_qa_count, max_q_len)
            question_num_marker_emb = self._question_num_marker(question_num_ind)
            embedded_question = torch.cat([embedded_question, question_num_marker_emb], dim=-1)

            # Encode the previous answers in passage embedding.
            repeated_embedded_passage = embedded_passage.unsqueeze(1).repeat(1, max_qa_count, 1, 1). \
                view(total_qa_count, passage_length, self._text_field_embedder.get_output_dim())
            # batch_size * max_qa_count, passage_length, word_embed_dim
            p1_answer_marker = p1_answer_marker.view(total_qa_count, passage_length)
            p1_answer_marker_emb = self._prev_ans_marker(p1_answer_marker)
            repeated_embedded_passage = torch.cat([repeated_embedded_passage, p1_answer_marker_emb], dim=-1)
            if self._num_context_answers > 1:
                p2_answer_marker = p2_answer_marker.view(total_qa_count, passage_length)
                p2_answer_marker_emb = self._prev_ans_marker(p2_answer_marker)
                repeated_embedded_passage = torch.cat([repeated_embedded_passage, p2_answer_marker_emb], dim=-1)
                if self._num_context_answers > 2:
                    p3_answer_marker = p3_answer_marker.view(total_qa_count, passage_length)
                    p3_answer_marker_emb = self._prev_ans_marker(p3_answer_marker)
                    repeated_embedded_passage = torch.cat([repeated_embedded_passage, p3_answer_marker_emb],
                                                          dim=-1)

            repeated_encoded_passage = self._variational_dropout(self._phrase_layer(repeated_embedded_passage,
                                                                                    repeated_passage_mask))
        else:
            encoded_passage = self._variational_dropout(self._phrase_layer(embedded_passage, passage_mask))
            repeated_encoded_passage = encoded_passage.unsqueeze(1).repeat(1, max_qa_count, 1, 1)
            repeated_encoded_passage = repeated_encoded_passage.view(total_qa_count,
                                                                     passage_length,
                                                                     self._encoding_dim)

        encoded_question = self._variational_dropout(self._phrase_layer(embedded_question, question_mask))

        # Shape: (batch_size * max_qa_count, passage_length, question_length)
        passage_question_similarity = self._matrix_attention(repeated_encoded_passage, encoded_question)
        # Shape: (batch_size * max_qa_count, passage_length, question_length)
        passage_question_attention = util.masked_softmax(passage_question_similarity, question_mask)
        # Shape: (batch_size * max_qa_count, passage_length, encoding_dim)
        passage_question_vectors = util.weighted_sum(encoded_question, passage_question_attention)

        # We replace masked values with something really negative here, so they don't affect the
        # max below.
        masked_similarity = util.replace_masked_values(passage_question_similarity,
                                                       question_mask.unsqueeze(1),
                                                       -1e7)

        question_passage_similarity = masked_similarity.max(dim=-1)[0].squeeze(-1)
        question_passage_attention = util.masked_softmax(question_passage_similarity, repeated_passage_mask)
        # Shape: (batch_size * max_qa_count, encoding_dim)
        question_passage_vector = util.weighted_sum(repeated_encoded_passage, question_passage_attention)
        tiled_question_passage_vector = question_passage_vector.unsqueeze(1).expand(total_qa_count,
                                                                                    passage_length,
                                                                                    self._encoding_dim)

        # Shape: (batch_size * max_qa_count, passage_length, encoding_dim * 4)
        final_merged_passage = torch.cat([repeated_encoded_passage,
                                          passage_question_vectors,
                                          repeated_encoded_passage * passage_question_vectors,
                                          repeated_encoded_passage * tiled_question_passage_vector],
                                         dim=-1)

        final_merged_passage = F.relu(self._merge_atten(final_merged_passage))

        residual_layer = self._variational_dropout(self._residual_encoder(final_merged_passage,
                                                                          repeated_passage_mask))
        self_attention_matrix = self._self_attention(residual_layer, residual_layer)

        mask = repeated_passage_mask.reshape(total_qa_count, passage_length, 1) \
               * repeated_passage_mask.reshape(total_qa_count, 1, passage_length)
        self_mask = torch.eye(passage_length, passage_length, device=self_attention_matrix.device)
        self_mask = self_mask.reshape(1, passage_length, passage_length)
        mask = mask * (1 - self_mask)

        self_attention_probs = util.masked_softmax(self_attention_matrix, mask)

        # (batch, passage_len, passage_len) * (batch, passage_len, dim) -> (batch, passage_len, dim)
        self_attention_vecs = torch.matmul(self_attention_probs, residual_layer)
        self_attention_vecs = torch.cat([self_attention_vecs, residual_layer,
                                         residual_layer * self_attention_vecs],
                                        dim=-1)
        residual_layer = F.relu(self._merge_self_attention(self_attention_vecs))

        final_merged_passage = final_merged_passage + residual_layer
        # batch_size * maxqa_pair_len * max_passage_len * 200
        final_merged_passage = self._variational_dropout(final_merged_passage)
        start_rep = self._span_start_encoder(final_merged_passage, repeated_passage_mask)
        span_start_logits = self._span_start_predictor(start_rep).squeeze(-1)

        end_rep = self._span_end_encoder(torch.cat([final_merged_passage, start_rep], dim=-1),
                                         repeated_passage_mask)
        span_end_logits = self._span_end_predictor(end_rep).squeeze(-1)

        span_yesno_logits = self._span_yesno_predictor(end_rep).squeeze(-1)
        span_followup_logits = self._span_followup_predictor(end_rep).squeeze(-1)

        span_start_logits = util.replace_masked_values(span_start_logits, repeated_passage_mask, -1e7)
        # batch_size * maxqa_len_pair, max_document_len
        span_end_logits = util.replace_masked_values(span_end_logits, repeated_passage_mask, -1e7)

        best_span = self._get_best_span_yesno_followup(span_start_logits, span_end_logits,
                                                       span_yesno_logits, span_followup_logits,
                                                       self._max_span_length)

        output_dict: Dict[str, Any] = {}

        # Compute the loss.
        if span_start is not None:
            loss = nll_loss(util.masked_log_softmax(span_start_logits, repeated_passage_mask), span_start.view(-1),
                            ignore_index=-1)
            self._span_start_accuracy(span_start_logits, span_start.view(-1), mask=qa_mask)
            loss += nll_loss(util.masked_log_softmax(span_end_logits,
                                                     repeated_passage_mask), span_end.view(-1), ignore_index=-1)
            self._span_end_accuracy(span_end_logits, span_end.view(-1), mask=qa_mask)
            self._span_accuracy(best_span[:, 0:2],
                                torch.stack([span_start, span_end], -1).view(total_qa_count, 2),
                                mask=qa_mask.unsqueeze(1).expand(-1, 2).long())
            # add a select for the right span to compute loss
            gold_span_end_loc = []
            span_end = span_end.view(total_qa_count).squeeze().data.cpu().numpy()
            for i in range(0, total_qa_count):
                gold_span_end_loc.append(max(span_end[i] * 3 + i * passage_length * 3, 0))
                gold_span_end_loc.append(max(span_end[i] * 3 + i * passage_length * 3 + 1, 0))
                gold_span_end_loc.append(max(span_end[i] * 3 + i * passage_length * 3 + 2, 0))
            gold_span_end_loc = span_start.new(gold_span_end_loc)

            pred_span_end_loc = []
            for i in range(0, total_qa_count):
                pred_span_end_loc.append(max(best_span[i][1] * 3 + i * passage_length * 3, 0))
                pred_span_end_loc.append(max(best_span[i][1] * 3 + i * passage_length * 3 + 1, 0))
                pred_span_end_loc.append(max(best_span[i][1] * 3 + i * passage_length * 3 + 2, 0))
            predicted_end = span_start.new(pred_span_end_loc)

            _yesno = span_yesno_logits.view(-1).index_select(0, gold_span_end_loc).view(-1, 3)
            _followup = span_followup_logits.view(-1).index_select(0, gold_span_end_loc).view(-1, 3)
            loss += nll_loss(F.log_softmax(_yesno, dim=-1), yesno_list.view(-1), ignore_index=-1)
            loss += nll_loss(F.log_softmax(_followup, dim=-1), followup_list.view(-1), ignore_index=-1)

            _yesno = span_yesno_logits.view(-1).index_select(0, predicted_end).view(-1, 3)
            _followup = span_followup_logits.view(-1).index_select(0, predicted_end).view(-1, 3)
            self._span_yesno_accuracy(_yesno, yesno_list.view(-1), mask=qa_mask)
            self._span_followup_accuracy(_followup, followup_list.view(-1), mask=qa_mask)
            output_dict["loss"] = loss

        # Compute F1 and preparing the output dictionary.
        output_dict['best_span_str'] = []
        output_dict['qid'] = []
        output_dict['followup'] = []
        output_dict['yesno'] = []
        best_span_cpu = best_span.detach().cpu().numpy()
        for i in range(batch_size):
            passage_str = metadata[i]['original_passage']
            offsets = metadata[i]['token_offsets']
            f1_score = 0.0
            per_dialog_best_span_list = []
            per_dialog_yesno_list = []
            per_dialog_followup_list = []
            per_dialog_query_id_list = []
            for per_dialog_query_index, (iid, answer_texts) in enumerate(
                    zip(metadata[i]["instance_id"], metadata[i]["answer_texts_list"])):
                predicted_span = tuple(best_span_cpu[i * max_qa_count + per_dialog_query_index])

                start_offset = offsets[predicted_span[0]][0]
                end_offset = offsets[predicted_span[1]][1]

                yesno_pred = predicted_span[2]
                followup_pred = predicted_span[3]
                per_dialog_yesno_list.append(yesno_pred)
                per_dialog_followup_list.append(followup_pred)
                per_dialog_query_id_list.append(iid)

                best_span_string = passage_str[start_offset:end_offset]
                per_dialog_best_span_list.append(best_span_string)
                if answer_texts:
                    if len(answer_texts) > 1:
                        t_f1 = []
                        # Compute F1 over N-1 human references and averages the scores.
                        for answer_index in range(len(answer_texts)):
                            idxes = list(range(len(answer_texts)))
                            idxes.pop(answer_index)
                            refs = [answer_texts[z] for z in idxes]
                            t_f1.append(squad_eval.metric_max_over_ground_truths(squad_eval.f1_score,
                                                                                 best_span_string,
                                                                                 refs))
                        f1_score = 1.0 * sum(t_f1) / len(t_f1)
                    else:
                        f1_score = squad_eval.metric_max_over_ground_truths(squad_eval.f1_score,
                                                                            best_span_string,
                                                                            answer_texts)
                self._official_f1(100 * f1_score)
            output_dict['qid'].append(per_dialog_query_id_list)
            output_dict['best_span_str'].append(per_dialog_best_span_list)
            output_dict['yesno'].append(per_dialog_yesno_list)
            output_dict['followup'].append(per_dialog_followup_list)
        return output_dict
Exemple #4
0
    def forward(
            self,
            question: Dict[str, torch.LongTensor],
            passage: Dict[str, torch.LongTensor],
            span_start: torch.IntTensor = None,
            span_end: torch.IntTensor = None,
            yesno_list: torch.IntTensor = None,
            metadata: List[Dict[str, Any]] = None) -> Dict[str, torch.Tensor]:

        batch_size, max_qa_count, max_q_len, _ = question[
            'token_characters'].size()
        total_qa_count = batch_size * max_qa_count
        qa_mask = torch.ge(yesno_list, 0).view(total_qa_count)

        embedded_question = self._text_field_embedder(question,
                                                      num_wrapping_dims=1)
        # total_qa_count * max_q_len * encoding_dim
        embedded_question = embedded_question.reshape(
            total_qa_count, max_q_len,
            self._text_field_embedder.get_output_dim())
        embedded_passage = self._text_field_embedder(passage)

        # split the embedded tensors to get the word embedding and char embedding, elmo embedding and features embedding
        word_emb_ques, elmo_ques, ques_feat = torch.split(embedded_question,
                                                          [200, 1024, 40],
                                                          dim=2)
        word_emb_pass, elmo_pass, pass_feat = torch.split(embedded_passage,
                                                          [200, 1024, 40],
                                                          dim=2)
        # word embedding and char embedding
        embedded_question = self._variational_dropout(
            torch.cat([word_emb_ques, elmo_ques], dim=2))
        embedded_passage = self._variational_dropout(
            torch.cat([word_emb_pass, elmo_pass], dim=2))
        passage_length = embedded_passage.size(1)

        question_mask = util.get_text_field_mask(question,
                                                 num_wrapping_dims=1).float()
        question_mask = question_mask.reshape(total_qa_count, max_q_len)
        passage_mask = util.get_text_field_mask(passage).float()

        repeated_passage_mask = passage_mask.unsqueeze(1).repeat(
            1, max_qa_count, 1)
        repeated_passage_mask = repeated_passage_mask.view(
            total_qa_count, passage_length)

        encode_passage = self._phrase_layer(embedded_passage, passage_mask)
        projected_passage = self.relu(
            self.projected_layer(torch.cat([encode_passage, elmo_pass],
                                           dim=2)))

        encode_question = self._phrase_layer(embedded_question, question_mask)
        projected_question = self.relu(
            self.projected_layer(torch.cat([encode_question, elmo_ques],
                                           dim=2)))

        encoded_passage = self._variational_dropout(projected_passage)
        repeated_encoded_passage = encoded_passage.unsqueeze(1).repeat(
            1, max_qa_count, 1, 1)
        repeated_encoded_passage = repeated_encoded_passage.view(
            total_qa_count, passage_length, self._encoding_dim)
        repeated_pass_feat = (pass_feat.unsqueeze(1).repeat(
            1, max_qa_count, 1, 1)).view(total_qa_count, passage_length, 40)
        encoded_question = self._variational_dropout(projected_question)

        # total_qa_count * max_q_len * passage_length
        # cnt * m * n
        s = torch.bmm(encoded_question,
                      repeated_encoded_passage.transpose(2, 1))
        alpha = util.masked_softmax(s,
                                    question_mask.unsqueeze(2).expand(
                                        s.size()),
                                    dim=1)
        # cnt * n * h
        aligned_p = torch.bmm(alpha.transpose(2, 1), encoded_question)

        # cnt * m * n
        beta = util.masked_softmax(s,
                                   repeated_passage_mask.unsqueeze(1).expand(
                                       s.size()),
                                   dim=2)
        # cnt * m * h
        aligned_q = torch.bmm(beta, repeated_encoded_passage)

        fused_p = self.fuse_p(repeated_encoded_passage, aligned_p)
        fused_q = self.fuse_q(encoded_question, aligned_q)

        # add manual features here
        q_aware_p = self.projected_lstm(
            torch.cat([fused_p, repeated_pass_feat], dim=2),
            repeated_passage_mask)

        # cnt * n * n
        # self_p = torch.bmm(q_aware_p, q_aware_p.transpose(2, 1))
        # self_p = self.bilinear_self_align(q_aware_p)
        self_p = self._self_attention(q_aware_p, q_aware_p)
        # for i in range(passage_length):
        #     self_p[:, i, i] = 0
        mask = repeated_passage_mask.reshape(
            total_qa_count, passage_length, 1) * repeated_passage_mask.reshape(
                total_qa_count, 1, passage_length)
        self_mask = torch.eye(passage_length,
                              passage_length,
                              device=self_p.device)
        self_mask = self_mask.reshape(1, passage_length, passage_length)
        mask = mask * (1 - self_mask)

        lamb = util.masked_softmax(self_p, mask, dim=2)
        # lamb = util.masked_softmax(self_p, repeated_passage_mask, dim=2)
        # cnt * n * h
        self_aligned_p = torch.bmm(lamb, q_aware_p)

        # cnt * n * h
        fused_self_p = self.fuse_s(q_aware_p, self_aligned_p)
        # contextual_p = self._variational_dropout(self.contextual_layer_p(fused_self_p, repeated_passage_mask))
        contextual_p = self.contextual_layer_p(fused_self_p,
                                               repeated_passage_mask)

        # contextual_q = self._variational_dropout(self.contextual_layer_q(fused_q, question_mask))
        contextual_q = self.contextual_layer_q(fused_q, question_mask)
        # cnt * m
        gamma = util.masked_softmax(
            self.linear_self_align(contextual_q).squeeze(2),
            question_mask,
            dim=1)
        # cnt * h
        weighted_q = torch.bmm(gamma.unsqueeze(1), contextual_q).squeeze(1)

        span_start_logits = self.bilinear_layer_s(weighted_q, contextual_p)
        span_end_logits = self.bilinear_layer_e(weighted_q, contextual_p)

        # cnt * n * 1  cnt * 1 * h
        span_yesno_logits = self.yesno_predictor(
            torch.bmm(span_end_logits.unsqueeze(2), weighted_q.unsqueeze(1)))
        # span_yesno_logits = self.yesno_predictor(contextual_p)

        span_start_logits = util.replace_masked_values(span_start_logits,
                                                       repeated_passage_mask,
                                                       -1e7)
        span_end_logits = util.replace_masked_values(span_end_logits,
                                                     repeated_passage_mask,
                                                     -1e7)

        best_span = self._get_best_span_yesno_followup(span_start_logits,
                                                       span_end_logits,
                                                       span_yesno_logits,
                                                       self._max_span_length)

        output_dict: Dict[str, Any] = {}

        # Compute the loss for training

        if span_start is not None:
            loss = nll_loss(util.masked_log_softmax(span_start_logits,
                                                    repeated_passage_mask),
                            span_start.view(-1),
                            ignore_index=-1)
            self._span_start_accuracy(span_start_logits,
                                      span_start.view(-1),
                                      mask=qa_mask)
            loss += nll_loss(util.masked_log_softmax(span_end_logits,
                                                     repeated_passage_mask),
                             span_end.view(-1),
                             ignore_index=-1)
            self._span_end_accuracy(span_end_logits,
                                    span_end.view(-1),
                                    mask=qa_mask)
            self._span_accuracy(best_span[:, 0:2],
                                torch.stack([span_start, span_end],
                                            -1).view(total_qa_count, 2),
                                mask=qa_mask.unsqueeze(1).expand(-1, 2).long())
            # add a select for the right span to compute loss
            gold_span_end_loc = []
            span_end = span_end.view(
                total_qa_count).squeeze().data.cpu().numpy()
            for i in range(0, total_qa_count):
                gold_span_end_loc.append(
                    max(span_end[i] * 3 + i * passage_length * 3, 0))
                gold_span_end_loc.append(
                    max(span_end[i] * 3 + i * passage_length * 3 + 1, 0))
                gold_span_end_loc.append(
                    max(span_end[i] * 3 + i * passage_length * 3 + 2, 0))
            gold_span_end_loc = span_start.new(gold_span_end_loc)
            pred_span_end_loc = []
            for i in range(0, total_qa_count):
                pred_span_end_loc.append(
                    max(best_span[i][1] * 3 + i * passage_length * 3, 0))
                pred_span_end_loc.append(
                    max(best_span[i][1] * 3 + i * passage_length * 3 + 1, 0))
                pred_span_end_loc.append(
                    max(best_span[i][1] * 3 + i * passage_length * 3 + 2, 0))
            predicted_end = span_start.new(pred_span_end_loc)

            _yesno = span_yesno_logits.view(-1).index_select(
                0, gold_span_end_loc).view(-1, 3)
            loss += nll_loss(torch.nn.functional.log_softmax(_yesno, dim=-1),
                             yesno_list.view(-1),
                             ignore_index=-1)

            _yesno = span_yesno_logits.view(-1).index_select(
                0, predicted_end).view(-1, 3)
            self._span_yesno_accuracy(_yesno,
                                      yesno_list.view(-1),
                                      mask=qa_mask)

            output_dict["loss"] = loss

        # Compute the EM and F1 on SQuAD and add the tokenized input to the output.
        output_dict['best_span_str'] = []
        output_dict['qid'] = []
        output_dict['yesno'] = []
        best_span_cpu = best_span.detach().cpu().numpy()
        for i in range(batch_size):
            passage_str = metadata[i]['original_passage']
            offsets = metadata[i]['token_offsets']
            f1_score = 0.0
            per_dialog_best_span_list = []
            per_dialog_yesno_list = []
            per_dialog_query_id_list = []
            for per_dialog_query_index, (iid, answer_texts) in enumerate(
                    zip(metadata[i]["instance_id"],
                        metadata[i]["answer_texts_list"])):
                predicted_span = tuple(best_span_cpu[i * max_qa_count +
                                                     per_dialog_query_index])
                start_offset = offsets[predicted_span[0]][0]
                end_offset = offsets[predicted_span[1]][1]
                yesno_pred = predicted_span[2]
                per_dialog_yesno_list.append(yesno_pred)
                per_dialog_query_id_list.append(iid)
                best_span_string = passage_str[start_offset:end_offset]
                per_dialog_best_span_list.append(best_span_string)
                if answer_texts:
                    if len(answer_texts) > 1:
                        t_f1 = []
                        # Compute F1 over N-1 human references and averages the scores.
                        for answer_index in range(len(answer_texts)):
                            idxes = list(range(len(answer_texts)))
                            idxes.pop(answer_index)
                            refs = [answer_texts[z] for z in idxes]
                            t_f1.append(
                                squad_eval.metric_max_over_ground_truths(
                                    squad_eval.f1_score, best_span_string,
                                    refs))
                        f1_score = 1.0 * sum(t_f1) / len(t_f1)
                    else:
                        f1_score = squad_eval.metric_max_over_ground_truths(
                            squad_eval.f1_score, best_span_string,
                            answer_texts)
                self._official_f1(100 * f1_score)
            output_dict['qid'].append(per_dialog_query_id_list)
            output_dict['best_span_str'].append(per_dialog_best_span_list)
            output_dict['yesno'].append(per_dialog_yesno_list)
        return output_dict
Exemple #5
0
    def forward(
            self,  # type: ignore
            question: Dict[str, torch.LongTensor],
            passage: Dict[str, torch.LongTensor],
            span_start: torch.IntTensor = None,
            span_end: torch.IntTensor = None,
            yesno: torch.IntTensor = None,
            question_tf: torch.FloatTensor = None,
            passage_tf: torch.FloatTensor = None,
            q_em_cased: torch.IntTensor = None,
            p_em_cased: torch.IntTensor = None,
            q_em_uncased: torch.IntTensor = None,
            p_em_uncased: torch.IntTensor = None,
            q_in_lemma: torch.IntTensor = None,
            p_in_lemma: torch.IntTensor = None,
            metadata: List[Dict[str, Any]] = None) -> Dict[str, torch.Tensor]:
        # pylint: disable=arguments-differ

        x1_c_emb = self._dropout(self._char_field_embedder(passage))
        x2_c_emb = self._dropout(self._char_field_embedder(question))

        # embedded_question = torch.cat([self._dropout(self._text_field_embedder(question)),
        #                                self._features_embedder(q_em_cased),
        #                                self._features_embedder(q_em_uncased),
        #                                self._features_embedder(q_in_lemma),
        #                                question_tf.unsqueeze(2)], dim=2)
        # embedded_passage = torch.cat([self._dropout(self._text_field_embedder(passage)),
        #                               self._features_embedder(p_em_cased),
        #                               self._features_embedder(p_em_uncased),
        #                               self._features_embedder(p_in_lemma),
        #                               passage_tf.unsqueeze(2)], dim=2)
        token_emb_q = self._dropout(self._text_field_embedder(question))
        token_emb_c = self._dropout(self._text_field_embedder(passage))
        token_emb_question, q_ner_and_pos = torch.split(token_emb_q, [300, 40],
                                                        dim=2)
        token_emb_passage, p_ner_and_pos = torch.split(token_emb_c, [300, 40],
                                                       dim=2)
        question_word_features = torch.cat([
            q_ner_and_pos,
            self._features_embedder(q_em_cased),
            self._features_embedder(q_em_uncased),
            self._features_embedder(q_in_lemma),
            question_tf.unsqueeze(2)
        ],
                                           dim=2)
        passage_word_features = torch.cat([
            p_ner_and_pos,
            self._features_embedder(p_em_cased),
            self._features_embedder(p_em_uncased),
            self._features_embedder(p_in_lemma),
            passage_tf.unsqueeze(2)
        ],
                                          dim=2)

        # embedded_question = self._highway_layer(embedded_q)
        # embedded_passage = self._highway_layer(embedded_q)

        question_mask = util.get_text_field_mask(question).float()
        passage_mask = util.get_text_field_mask(passage).float()
        question_lstm_mask = question_mask if self._mask_lstms else None
        passage_lstm_mask = passage_mask if self._mask_lstms else None

        char_features_c = self._char_rnn(
            x1_c_emb.reshape((x1_c_emb.size(0) * x1_c_emb.size(1),
                              x1_c_emb.size(2), x1_c_emb.size(3))),
            passage_lstm_mask.unsqueeze(2).repeat(
                1, 1, x1_c_emb.size(2)).reshape(
                    (x1_c_emb.size(0) * x1_c_emb.size(1),
                     x1_c_emb.size(2)))).reshape(
                         (x1_c_emb.size(0), x1_c_emb.size(1), x1_c_emb.size(2),
                          -1))[:, :, -1, :]
        char_features_q = self._char_rnn(
            x2_c_emb.reshape((x2_c_emb.size(0) * x2_c_emb.size(1),
                              x2_c_emb.size(2), x2_c_emb.size(3))),
            question_lstm_mask.unsqueeze(2).repeat(
                1, 1, x2_c_emb.size(2)).reshape(
                    (x2_c_emb.size(0) * x2_c_emb.size(1),
                     x2_c_emb.size(2)))).reshape(
                         (x2_c_emb.size(0), x2_c_emb.size(1), x2_c_emb.size(2),
                          -1))[:, :, -1, :]

        # token_emb_q, char_emb_q, question_word_features = torch.split(embedded_question, [300, 300, 56], dim=2)
        # token_emb_c, char_emb_c, passage_word_features = torch.split(embedded_passage, [300, 300, 56], dim=2)

        # char_features_q = self._char_rnn(char_emb_q, question_lstm_mask)
        # char_features_c = self._char_rnn(char_emb_c, passage_lstm_mask)

        emb_question = torch.cat(
            [token_emb_question, char_features_q, question_word_features],
            dim=2)
        emb_passage = torch.cat(
            [token_emb_passage, char_features_c, passage_word_features], dim=2)

        encoded_question = self._dropout(
            self._phrase_layer(emb_question, question_lstm_mask))
        encoded_passage = self._dropout(
            self._phrase_layer(emb_passage, passage_lstm_mask))

        batch_size = encoded_question.size(0)
        passage_length = encoded_passage.size(1)

        encoding_dim = encoded_question.size(-1)

        # c_check = self._stacked_brnn(encoded_passage, passage_lstm_mask)
        # q = self._stacked_brnn(encoded_question, question_lstm_mask)
        c_check = encoded_passage
        q = encoded_question
        for i in range(self.hops):
            q_tilde = self.interactive_aligners[i].forward(
                c_check, q, question_mask)
            c_bar = self.interactive_SFUs[i].forward(
                c_check,
                torch.cat([q_tilde, c_check * q_tilde, c_check - q_tilde], 2))
            c_tilde = self.self_aligners[i].forward(c_bar, passage_mask)
            c_hat = self.self_SFUs[i].forward(
                c_bar, torch.cat([c_tilde, c_bar * c_tilde, c_bar - c_tilde],
                                 2))
            c_check = self.aggregate_rnns[i].forward(c_hat, passage_mask)

        # Predict
        start_scores, end_scores, yesno_scores = self.mem_ans_ptr.forward(
            c_check, q, passage_mask, question_mask)

        best_span, yesno_predict, loc = self.get_best_span(
            start_scores, end_scores, yesno_scores)

        output_dict = {
            "span_start_logits": start_scores,
            "span_end_logits": end_scores,
            "best_span": best_span
        }

        # Compute the loss for training.
        if span_start is not None:
            loss = nll_loss(start_scores, span_start.squeeze(-1))
            self._span_start_accuracy(start_scores, span_start.squeeze(-1))
            loss += nll_loss(end_scores, span_end.squeeze(-1))
            self._span_end_accuracy(end_scores, span_end.squeeze(-1))
            self._span_accuracy(best_span,
                                torch.stack([span_start, span_end], -1))

            gold_span_end_loc = []
            span_end = span_end.view(batch_size).squeeze().data.cpu().numpy()
            for i in range(batch_size):
                gold_span_end_loc.append(
                    max(span_end[i] + i * passage_length, 0))
            gold_span_end_loc = span_start.new(gold_span_end_loc)
            _yesno = yesno_scores.view(-1, 3).index_select(
                0, gold_span_end_loc).view(-1, 3)
            loss += nll_loss(_yesno, yesno.view(-1), ignore_index=-1)

            pred_span_end_loc = []
            for i in range(batch_size):
                pred_span_end_loc.append(max(loc[i], 0))
            predicted_end = span_start.new(pred_span_end_loc)
            _yesno = yesno_scores.view(-1, 3).index_select(0,
                                                           predicted_end).view(
                                                               -1, 3)
            self._span_yesno_accuracy(_yesno, yesno.squeeze(-1))

            output_dict['loss'] = loss

        # Compute the EM and F1 on SQuAD and add the tokenized input to the output.
        if metadata is not None:
            output_dict['best_span_str'] = []
            question_tokens = []
            passage_tokens = []
            for i in range(batch_size):
                question_tokens.append(metadata[i]['question_tokens'])
                passage_tokens.append(metadata[i]['passage_tokens'])
                passage_str = metadata[i]['original_passage']
                offsets = metadata[i]['token_offsets']
                predicted_span = tuple(best_span[i].detach().cpu().numpy())
                start_offset = offsets[predicted_span[0]][0]
                end_offset = offsets[predicted_span[1]][1]
                best_span_string = passage_str[start_offset:end_offset]
                output_dict['best_span_str'].append(best_span_string)
                answer_texts = metadata[i].get('answer_texts', [])
                if answer_texts:
                    self._squad_metrics(best_span_string, answer_texts)
            output_dict['question_tokens'] = question_tokens
            output_dict['passage_tokens'] = passage_tokens
            output_dict['yesno'] = yesno_predict
        return output_dict