def test_agnn_conv(requires_grad): x = torch.randn(4, 16) edge_index = torch.tensor([[0, 0, 0, 1, 2, 3], [1, 2, 3, 0, 0, 0]]) row, col = edge_index adj = SparseTensor(row=row, col=col, sparse_sizes=(4, 4)) conv = AGNNConv(requires_grad=requires_grad) assert conv.__repr__() == 'AGNNConv()' out = conv(x, edge_index) assert out.size() == (4, 16) assert torch.allclose(conv(x, adj.t()), out, atol=1e-6) t = '(Tensor, Tensor) -> Tensor' jit = torch.jit.script(conv.jittable(t)) assert jit(x, edge_index).tolist() == out.tolist() t = '(Tensor, SparseTensor) -> Tensor' jit = torch.jit.script(conv.jittable(t)) assert torch.allclose(jit(x, adj.t()), out, atol=1e-6)
def test_agnn_conv(): in_channels = 16 edge_index = torch.tensor([[0, 0, 0, 1, 2, 3], [1, 2, 3, 0, 0, 0]]) num_nodes = edge_index.max().item() + 1 x = torch.randn((num_nodes, in_channels)) conv = AGNNConv(requires_grad=True) assert conv.__repr__() == 'AGNNConv()' out = conv(x, edge_index) assert out.size() == (num_nodes, in_channels) jit = torch.jit.script(conv.jittable()) assert jit(x, edge_index).tolist() == out.tolist() conv = AGNNConv(requires_grad=False) out = conv(x, edge_index) assert out.size() == (num_nodes, in_channels) jit = torch.jit.script(conv.jittable()) assert jit(x, edge_index).tolist() == out.tolist()