Exemple #1
0
def test_gae():
    model = GAE(encoder=lambda x: x)
    model.reset_parameters()

    x = torch.Tensor([[1, -1], [1, 2], [2, 1]])
    z = model.encode(x)
    assert z.tolist() == x.tolist()

    adj = model.decoder.forward_all(z)
    assert adj.tolist() == torch.sigmoid(
        torch.Tensor([[+2, -1, +1], [-1, +5, +4], [+1, +4, +5]])).tolist()

    edge_index = torch.tensor([[0, 1], [1, 2]])
    value = model.decode(z, edge_index)
    assert value.tolist() == torch.sigmoid(torch.Tensor([-1, 4])).tolist()

    edge_index = torch.tensor([[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
                               [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]])
    data = Data(edge_index=edge_index)
    data.num_nodes = edge_index.max().item() + 1
    data = train_test_split_edges(data, val_ratio=0.2, test_ratio=0.3)

    z = torch.randn(11, 16)
    loss = model.recon_loss(z, data.train_pos_edge_index)
    assert loss.item() > 0

    auc, ap = model.test(z, data.val_pos_edge_index, data.val_neg_edge_index)
    assert auc >= 0 and auc <= 1 and ap >= 0 and ap <= 1
Exemple #2
0
def test_gae():
    model = GAE(encoder=lambda x: x)
    model.reset_parameters()

    x = torch.Tensor([[1, -1], [1, 2], [2, 1]])
    z = model.encode(x)
    assert z.tolist() == x.tolist()

    adj = model.decode(z)
    assert adj.tolist() == torch.sigmoid(
        torch.Tensor([[+2, -1, +1], [-1, +5, +4], [+1, +4, +5]])).tolist()

    edge_index = torch.tensor([[0, 1], [1, 2]])
    value = model.decode_indices(z, edge_index)
    assert value.tolist() == torch.sigmoid(torch.Tensor([-1, 4])).tolist()

    edge_index = torch.tensor([[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
                               [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]])
    data = Data(edge_index=edge_index)
    data = model.split_edges(data, val_ratio=0.2, test_ratio=0.3)

    assert data.val_pos_edge_index.size() == (2, 2)
    assert data.val_neg_edge_index.size() == (2, 2)
    assert data.test_pos_edge_index.size() == (2, 3)
    assert data.test_neg_edge_index.size() == (2, 3)
    assert data.train_pos_edge_index.size() == (2, 5)
    assert data.train_neg_adj_mask.size() == (11, 11)
    assert data.train_neg_adj_mask.sum().item() == (11**2 - 11) / 2 - 4 - 6 - 5

    z = torch.randn(11, 16)
    loss = model.recon_loss(z, data.train_pos_edge_index)
    assert loss.item() > 0

    auc, ap = model.test(z, data.val_pos_edge_index, data.val_neg_edge_index)
    assert auc >= 0 and auc <= 1 and ap >= 0 and ap <= 1
Exemple #3
0
def test_gae():
    model = GAE(encoder=lambda x: x)
    model.reset_parameters()

    x = torch.Tensor([[1, -1], [1, 2], [2, 1]])
    z = model.encode(x)
    assert z.tolist() == x.tolist()

    adj = model.decoder.forward_all(z)
    assert adj.tolist() == torch.sigmoid(
        torch.Tensor([[+2, -1, +1], [-1, +5, +4], [+1, +4, +5]])).tolist()

    edge_index = torch.tensor([[0, 1], [1, 2]])
    value = model.decode(z, edge_index)
    assert value.tolist() == torch.sigmoid(torch.Tensor([-1, 4])).tolist()

    edge_index = torch.tensor([[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
                               [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]])
    data = Data(edge_index=edge_index, num_nodes=11)
    transform = RandomLinkSplit(split_labels=True,
                                add_negative_train_samples=False)
    train_data, val_data, test_data = transform(data)

    z = torch.randn(11, 16)
    loss = model.recon_loss(z, train_data.pos_edge_label_index)
    assert loss.item() > 0

    auc, ap = model.test(z, val_data.pos_edge_label_index,
                         val_data.neg_edge_label_index)
    assert auc >= 0 and auc <= 1 and ap >= 0 and ap <= 1
Exemple #4
0
def train(dataset, args, writer = None):
    task = args.task
    test_loader = loader = DataLoader(dataset, batch_size=args.batch_size, shuffle=True)

    if task == 'link':
        model = GAE(models.GNNStack(dataset.num_node_features, args.hidden_dim, int(dataset.num_classes), 
                            args))
    elif task == 'node':
        model = models.GNNStack(dataset.num_node_features, args.hidden_dim, int(dataset.num_classes), 
                            args)
    else:
        raise RuntimeError("Unknown task.")
    metrics_for_labels = True if args.metrics_for_labels == 'True' else False
    scheduler, opt = build_optimizer(args, model.parameters())
    print("Training \nModel: {}, Data representation: {}. Dataset: {}, Task type: {}". format(args.model_name, args.graph_type, args.dataset, args.task))
    metric_text = 'test accuracy' if task == 'node' else 'test precision'
    for epoch in range(args.epochs):
        total_loss = 0
        model.train()
        for batch in loader:
            opt.zero_grad()
            if task == 'node':
                pred = model(batch)
                label = batch.y
                pred = pred[batch.train_mask]
                label = label[batch.train_mask]
                loss = model.loss(pred, label)
            else:
                train_pos_edge_index = batch.train_pos_edge_index
                z = model.encode(batch)
                loss = model.recon_loss(z, train_pos_edge_index)
            loss.backward()
            opt.step()
            total_loss += loss.item() * batch.num_graphs
        total_loss /= len(loader.dataset)
        if writer == None:
            print(total_loss)
        else:
            writer.add_scalar("loss", total_loss, epoch)

        if epoch % 10 == 0:
            test_metric, _ = test(loader, model, task = task)
            if writer == None:
                print(test_metric, metric_text)
            else:
                writer.add_scalar(metric_text, test_metric, epoch)
        if metrics_for_labels == True and epoch == args.epochs -1:
            _, labels_metrics = test(loader, model, task = task, metrics_for_labels=metrics_for_labels)
            print('{} for labels:\n {}'.format(metric_text, labels_metrics))
Exemple #5
0
class UnsGAE(object):

    def __init__(self, data, embed_dim, **kwargs):
        super(UnsGAE, self).__init__()
        self.data = data
        self.input_dim = self.data.dim
        self.embed_dim = embed_dim

        # for now, we only work with 2-layer encoders
        self.hidden_dim = kwargs.get('hidden_dim', 2*embed_dim)
        self.encoder = kwargs.get('encoder', batched_SAGEEncoder)
        self.encoder = self.encoder(self.input_dim,
                                    self.hidden_dim,
                                    self.embed_dim)
        self.model = GAE(self.encoder)

        # preparing the device 
        device = kwargs.get('device', 'cuda')
        if device=='gpu' and not(torch.cuda.is_available()):
            print('CUDA is not available in PyTorch. the model ' +\
                  'will be initiated on CPU.')
            device = 'cpu'
        self.device = torch.device(device)

        
    def init_model(self, sizes, weights_path=None):
        self.model = self.model.to(self.device)
        
        # sizes are directly used for initializing the model
        # but it will be used for every feed-forward as the
        # sampling size of the neighbors
        assert len(sizes)==self.model.encoder.num_layers, \
            'Number of sizes should be equal to the number of layers in the encoder.'
        self.sizes = sizes
        if not(hasattr(self.data, 'loader')):
            self.data.get_neighbor_sampler(self.sizes)

        if weights_path is not None:
            self.model.load_state_dict(torch.load(weights_path, map_location=self.device))
            
        
    def init_training(self, neg_num, optim='Adam', lr=1e-5, smooth_par=0.75):
        if optim=='Adam':
            self.optimizer = torch.optim.Adam(self.model.parameters(), lr=lr)
        elif optim=='SGD':
            self.optimizer = torch.optim.SGD(self.model.parameters(), lr=lr)
        self.train_one_epoch = self._train_edge_batching
        self.neg_num = neg_num

        if not(hasattr(self.data, 'pos_pairs')):
            assert 'pos_samples_path' in kwargs, 'The provided data does ' +\
                'not come with positive pairs, and we need a path to the ' +\
                'already selected positive samples. You can provide it through ' +\
                'input pos_samples_path .'
            include_nodes = kwargs.get('include_nodes', None)
            self.data.load_positive_pairs(kwargs['pos_samples_path'], include_nodes)
            
        if not(hasattr(self.data, 'neg_sampler')):
            #smooth_par = kwargs.get('smooth_par', 0.75)
            self.data.get_negative_sampler(smooth_par)

        if not(hasattr(self.data, 'x_all')):
            self.data._fetch_node_features()

        
    def init_validation(self):
        if not(hasattr(self.data, 'x_all')):
            self.data._fetch_node_features()
        

    def embed_some(self, sample_inds, b=100):
        """This will be used in the training, when the
        embedding of a batch of samples are needed
        """

        quot, rem = np.divmod(len(sample_inds), b)

        Z = []
        for i in range(quot+1):
            if i<quot:
                b_ids = sample_inds[i*b:(i+1)*b]
            elif rem>0:
                b_ids = sample_inds[i*b:]
                
            # neighbor-sampling for each sample
            _, n_id, adjs = self.data.train_loader.sample(b_ids)
            adjs = [adj.to(self.device) for adj in adjs]

            # get feature vectors through the neighbors sampled above
            batch_X = torch.from_numpy(self.data.get_node_features(n_id))
            batch_X = batch_X.to(torch.float).to(self.device)

            # the encoder's output as the embedding
            try:
                batch_Z = self.model.encoder(batch_X, adjs)
            except:
                pdb.set_trace()
            Z += [batch_Z]

        Z = torch.cat(Z, dim=0)
        return Z

    def embed_all(self):

        L = self.model.encoder.num_layers
        pbar = tqdm(total=self.data.n_x * L, position=0, leave=True)
        pbar.set_description('Evaluating')
        
        self.model.encoder.eval()
        # inference is used in the evaluation stage (not in training) when
        # the embeddings for "all" nodes will be computed. It's written in a way
        # that is faster than the foward-passing function which is mostly used
        # for single batches in the training
        with torch.no_grad():
            for i in range(L):
                xs = []
                for batch_size, n_id, adj in self.data.test_loader:
                    edge_index, _, size = adj.to(self.device)
                    if i==0:
                        x = torch.from_numpy(self.data.get_node_features(n_id))
                        x = x.to(torch.float).to(self.device)
                    else:
                        x = x_all[n_id,:].to(self.device)

                    x_target = x[:size[1]]
                    x = self.model.encoder.convs[i]((x,x_target), edge_index)
                    if i != L-1:
                        x = F.relu(x)

                    xs.append(x[:batch_size,:].cpu())
                    
                    pbar.update(batch_size)

                x_all = torch.cat(xs, dim=0)
                
        pbar.close()
        
        return x_all
    
            
    def _train_edge_batching(self, ep, batch_size=5000):

        assert hasattr(self.data, 'pos_pairs'), 'Positive and negative ' + \
            'samples must be generated before starting the training'
        
        self.model.train()
        neg_num = self.neg_num

        torch.multiprocessing.set_sharing_strategy('file_system')
        pbar = tqdm(total=self.data.pos_pairs.shape[1], position=0, leave=True)
        pbar.set_description(f'Epoch {ep:02d}')
        
        total_loss = 0
        np.random.shuffle(self.data.pos_pairs.T)
        quot, rem = np.divmod(self.data.pos_pairs.shape[1], batch_size)

        for i in range(quot+1):

            # positive mini-batch
            # (#: batch size)
            if i<quot:
                batch_pos_pairs = self.data.pos_pairs[:,i*batch_size:(i+1)*batch_size]
            else:
                batch_pos_pairs = self.data.pos_pairs[:,i*batch_size:]
            batch_pos_samples, pos_edge_index = np.unique(batch_pos_pairs,
                                                          return_inverse=True)
            pos_edge_index = pos_edge_index.reshape(batch_pos_pairs.shape)

            # negative mini-batch
            # (#: batch_size * neg_num)
            batch_neg_samples = self.data.neg_sampler.sample(
                torch.Size([neg_num*batch_pos_pairs.shape[1]]))
            neg_edge_index = np.array([np.repeat(pos_edge_index[0,:],neg_num),
                                       np.arange(pos_edge_index.max()+1,
                                                 pos_edge_index.max()+len(batch_neg_samples)+1)])

            # embeddings of the nodes involved in + and - edges
            self.optimizer.zero_grad()
            unodes = batch_pos_samples.tolist() + batch_neg_samples.tolist()
            Z = self.embed_some(unodes)

            # reconstruction loss
            pos_edge_index = torch.from_numpy(pos_edge_index).to(self.device)
            neg_edge_index = torch.from_numpy(neg_edge_index).to(self.device)
            loss = self.model.recon_loss(Z, pos_edge_index, neg_edge_index)
            loss.backward()
            self.optimizer.step()

            total_loss += float(loss)

            pbar.update(batch_size)

        pbar.close()

        loss = total_loss / (quot+1)
        return loss


    def validate(self):

        self.model.eval()

        Z = self.embed_all()
        ents_Z = Z[:-1,:][self.data.selected_inds[:-1]>=self.data.nA,:].detach().numpy()
        prop_Z = Z[self.data.tags=='prop',:].detach().numpy()
        scores = np.dot(ents_Z, prop_Z.T).squeeze()
        
        sorted_ents = self.data.selected_ents[np.argsort(-scores)]
        unstudied_sorted_ents = np.array([x for x in sorted_ents
                                           if x not in self.data.studied_ents])
        preds = unstudied_sorted_ents[:50]

        prec = np.isin(preds,self.data.GT).sum() / len(preds)

        return prec
Exemple #6
0
def run_GAE(input_data, output_dir, epochs=1000, lr=0.01, weight_decay=0.0005):
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    print('Device: '.ljust(32), device)
    print('Model Name: '.ljust(32), 'GAE')
    print('Model params:{:19} lr: {}   weight_decay: {}'.format(
        '', lr, weight_decay))
    print('Total number of epochs to run: '.ljust(32), epochs)
    print('*' * 70)

    data = input_data.clone().to(device)
    in_channels = data.num_features
    out_channels = data.num_classes.item()
    model = GAE(GAEncoder(in_channels, out_channels)).to(device)
    data = input_data.clone().to(device)
    split_data = model.split_edges(data)
    x, train_pos_edge_index, edge_attr = split_data.x.to(
        device), split_data.train_pos_edge_index.to(device), data.edge_attr.to(
            device)
    split_data.train_idx = split_data.test_idx = data.y = None
    optimizer = torch.optim.Adam(model.parameters(),
                                 lr=lr,
                                 weight_decay=weight_decay)
    train_losses, test_losses = [], []
    aucs = []
    aps = []
    model.train()
    for epoch in range(1, epochs + 1):
        train_loss = 0
        test_loss = 0
        optimizer.zero_grad()
        z = model.encode(x, train_pos_edge_index)
        train_loss = model.recon_loss(z, train_pos_edge_index)
        train_losses.append(train_loss)
        train_loss.backward()
        optimizer.step()

        model.eval()
        with torch.no_grad():
            z = model.encode(x, train_pos_edge_index)
        auc, ap = model.test(z, split_data.test_pos_edge_index,
                             split_data.test_neg_edge_index)
        test_loss = model.recon_loss(z, data.test_pos_edge_index)
        test_losses.append(test_loss.item())
        aucs.append(auc)
        aps.append(ap)

        figname = os.path.join(
            output_dir, "_".join((GAE.__name__, str(lr), str(weight_decay))))
        makepath(output_dir)

        if (epoch % int(epochs / 10) == 0):
            print(
                'Epoch: {}       Train loss: {}    Test loss: {}     AUC: {}    AP: {}'
                .format(epoch, train_loss, test_loss, auc, ap))
        if (epoch == epochs):
            print(
                '-' * 65,
                '\nFinal epoch: {}    Train loss: {}    Test loss: {}    AUC: {}    AP: {}'
                .format(epoch, train_loss, test_loss, auc, ap))
        log = 'Final epoch: {}    Train loss: {}    Test loss: {}    AUC: {}    AP: {}'.format(
            epoch, train_loss, test_loss, auc, ap)
        write_log(log, figname)
    print('-' * 65)

    plot_linkpred(train_losses, test_losses, aucs, aps, output_dir, epochs,
                  figname)
    return
Exemple #7
0
def perturb_edges(data,
                  name,
                  remove_pct,
                  add_pct,
                  hidden_channels=16,
                  epochs=400):
    if remove_pct == 0 and add_pct == 0:
        return
    try:
        cached = pickle.load(
            open(f'{ROOT}/cache/edge/{name}_{remove_pct}_{add_pct}.pt', 'rb'))
        print(f'Use cached edge augmentation for dataset {name}')

        if data.setting == 'inductive':
            data.train_edge_index = cached
        else:
            data.edge_index = cached
        return
    except FileNotFoundError:
        try:
            A_pred, adj_orig = pickle.load(
                open(f'{ROOT}/cache/edge/{name}.pt', 'rb'))
            A = sample_graph_det(adj_orig, A_pred, remove_pct, add_pct)
            data.edge_index, _ = from_scipy_sparse_matrix(A)
            pickle.dump(
                data.edge_index,
                open(f'{ROOT}/cache/edge/{name}_{remove_pct}_{add_pct}.pt',
                     'wb'))
            return
        except FileNotFoundError:
            print(
                f'cache/edge/{name}_{remove_pct}_{add_pct}.pt not found! Regenerating it now'
            )

    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

    if data.setting == 'inductive':
        train_data = Data(x=data.train_x,
                          ori_x=data.ori_x,
                          edge_index=data.train_edge_index,
                          y=data.train_y)
    else:
        train_data = deepcopy(data)

    edge_index = deepcopy(train_data.edge_index)
    train_data = train_test_split_edges(train_data,
                                        val_ratio=0.1,
                                        test_ratio=0)
    num_features = train_data.ori_x.shape[1]
    model = GAE(GCNEncoder(num_features, hidden_channels))
    model = model.to(device)
    x = train_data.ori_x.to(device)
    train_pos_edge_index = train_data.train_pos_edge_index.to(device)
    optimizer = torch.optim.Adam(model.parameters(), lr=0.01)

    best_val_auc = 0
    best_z = None
    for epoch in range(1, epochs + 1):
        model.train()
        optimizer.zero_grad()
        z = model.encode(x, train_pos_edge_index)
        loss = model.recon_loss(z, train_pos_edge_index)
        loss.backward()
        optimizer.step()

        model.eval()
        with torch.no_grad():
            z = model.encode(x, train_pos_edge_index)

        auc, ap = model.test(z, train_data.val_pos_edge_index,
                             train_data.val_neg_edge_index)
        print('Val | Epoch: {:03d}, AUC: {:.4f}, AP: {:.4f}'.format(
            epoch, auc, ap))
        if auc > best_val_auc:
            best_val_auc = auc
            best_z = deepcopy(z)

    A_pred = torch.sigmoid(torch.mm(z, z.T)).cpu().numpy()

    adj_orig = to_scipy_sparse_matrix(edge_index).asformat('csr')
    adj_pred = sample_graph_det(adj_orig, A_pred, remove_pct, add_pct)

    if data.setting == 'inductive':
        data.train_edge_index, _ = from_scipy_sparse_matrix(adj_pred)
    else:
        data.edge_index, _ = from_scipy_sparse_matrix(adj_pred)

    pickle.dump((A_pred, adj_orig), open(f'{ROOT}/cache/edge/{name}.pt', 'wb'))

    if data.setting == 'inductive':
        pickle.dump(
            data.train_edge_index,
            open(f'{ROOT}/cache/edge/{name}_{remove_pct}_{add_pct}.pt', 'wb'))
    else:
        pickle.dump(
            data.edge_index,
            open(f'{ROOT}/cache/edge/{name}_{remove_pct}_{add_pct}.pt', 'wb'))