def test_featurized(self): e1 = EntitySchema(num_partitions=1, featurized=True) e2 = EntitySchema(num_partitions=1) r1 = RelationSchema(name="r1", lhs="e1", rhs="e2") r2 = RelationSchema(name="r2", lhs="e2", rhs="e1") base_config = ConfigSchema( dimension=10, relations=[r1, r2], entities={ "e1": e1, "e2": e2 }, entity_path=None, # filled in later edge_paths=[], # filled in later checkpoint_path=self.checkpoint_path.name, workers=2, ) dataset = generate_dataset(base_config, num_entities=100, fractions=[0.4, 0.2]) self.addCleanup(dataset.cleanup) train_config = attr.evolve( base_config, entity_path=dataset.entity_path.name, edge_paths=[dataset.relation_paths[0].name], ) eval_config = attr.evolve( base_config, entity_path=dataset.entity_path.name, edge_paths=[dataset.relation_paths[1].name], ) # Just make sure no exceptions are raised and nothing crashes. train(train_config, rank=0, subprocess_init=self.subprocess_init) self.assertCheckpointWritten(train_config, version=1) do_eval(eval_config, subprocess_init=self.subprocess_init)
def test_resume_from_checkpoint(self): entity_name = "e" relation_config = RelationSchema(name="r", lhs=entity_name, rhs=entity_name) base_config = ConfigSchema( dimension=10, relations=[relation_config], entities={entity_name: EntitySchema(num_partitions=1)}, entity_path=None, # filled in later edge_paths=[], # filled in later checkpoint_path=self.checkpoint_path.name, num_epochs=2, num_edge_chunks=2, workers=2, ) dataset = generate_dataset(base_config, num_entities=100, fractions=[0.4, 0.4]) self.addCleanup(dataset.cleanup) train_config = attr.evolve( base_config, entity_path=dataset.entity_path.name, edge_paths=[d.name for d in dataset.relation_paths], ) # Just make sure no exceptions are raised and nothing crashes. init_embeddings(train_config.checkpoint_path, train_config, version=7) train(train_config, rank=0, subprocess_init=self.subprocess_init) self.assertCheckpointWritten(train_config, version=8) # Check we did resume the run, not start the whole thing anew. self.assertFalse( os.path.exists( os.path.join(train_config.checkpoint_path, "model.v6.h5")))
def test_with_initial_value(self): entity_name = "e" relation_config = RelationSchema(name="r", lhs=entity_name, rhs=entity_name) base_config = ConfigSchema( dimension=10, relations=[relation_config], entities={entity_name: EntitySchema(num_partitions=1)}, entity_path=None, # filled in later edge_paths=[], # filled in later checkpoint_path=self.checkpoint_path.name, workers=2, ) dataset = generate_dataset(base_config, num_entities=100, fractions=[0.4]) self.addCleanup(dataset.cleanup) init_dir = TemporaryDirectory() self.addCleanup(init_dir.cleanup) train_config = attr.evolve( base_config, entity_path=dataset.entity_path.name, edge_paths=[dataset.relation_paths[0].name], init_path=init_dir.name, ) # Just make sure no exceptions are raised and nothing crashes. init_embeddings(train_config.init_path, train_config) train(train_config, rank=0, subprocess_init=self.subprocess_init) self.assertCheckpointWritten(train_config, version=1)
def test_entity_dimensions(self): entity_name = "e" relation_config = RelationSchema(name="r", lhs=entity_name, rhs=entity_name) base_config = ConfigSchema( dimension=10, relations=[relation_config], entities={ entity_name: EntitySchema(num_partitions=1, dimension=8) }, entity_path=None, # filled in later edge_paths=[], # filled in later checkpoint_path=self.checkpoint_path.name, workers=2, ) dataset = generate_dataset(base_config, num_entities=100, fractions=[0.4, 0.2]) self.addCleanup(dataset.cleanup) train_config = attr.evolve( base_config, entity_path=dataset.entity_path.name, edge_paths=[dataset.relation_paths[0].name], ) eval_config = attr.evolve( base_config, entity_path=dataset.entity_path.name, edge_paths=[dataset.relation_paths[1].name], relations=[attr.evolve(relation_config, all_negs=True)], ) # Just make sure no exceptions are raised and nothing crashes. train(train_config, rank=0, subprocess_init=self.subprocess_init) self.assertCheckpointWritten(train_config, version=1) do_eval(eval_config, subprocess_init=self.subprocess_init)
def _test_gpu(self, do_half_precision=False, num_partitions=2): entity_name = "e" relation_config = RelationSchema(name="r", lhs=entity_name, rhs=entity_name) base_config = ConfigSchema( dimension=16, batch_size=1024, num_batch_negs=64, num_uniform_negs=64, relations=[relation_config], entities={entity_name: EntitySchema(num_partitions=num_partitions)}, entity_path=None, # filled in later edge_paths=[], # filled in later checkpoint_path=self.checkpoint_path.name, workers=2, num_gpus=2, regularization_coef=1e-4, half_precision=do_half_precision, ) dataset = generate_dataset(base_config, num_entities=100, fractions=[0.4, 0.2]) self.addCleanup(dataset.cleanup) train_config = attr.evolve( base_config, entity_path=dataset.entity_path.name, edge_paths=[dataset.relation_paths[0].name], ) eval_config = attr.evolve( base_config, entity_path=dataset.entity_path.name, edge_paths=[dataset.relation_paths[1].name], relations=[attr.evolve(relation_config, all_negs=True)], ) # Just make sure no exceptions are raised and nothing crashes. train(train_config, rank=0, subprocess_init=self.subprocess_init) self.assertCheckpointWritten(train_config, version=1) do_eval(eval_config, subprocess_init=self.subprocess_init)
def main(): setup_logging() parser = argparse.ArgumentParser(description='Example on FB15k') parser.add_argument('--config', default=DEFAULT_CONFIG, help='Path to config file') parser.add_argument('-p', '--param', action='append', nargs='*') parser.add_argument('--data_dir', type=Path, default='data', help='where to save processed data') parser.add_argument('--no-filtered', dest='filtered', action='store_false', help='Run unfiltered eval') args = parser.parse_args() if args.param is not None: overrides = chain.from_iterable(args.param) # flatten else: overrides = None # download data data_dir = args.data_dir fpath = download_url(FB15K_URL, data_dir) extract_tar(fpath) print('Downloaded and extracted file.') loader = ConfigFileLoader() config = loader.load_config(args.config, overrides) set_logging_verbosity(config.verbose) subprocess_init = SubprocessInitializer() subprocess_init.register(setup_logging, config.verbose) subprocess_init.register(add_to_sys_path, loader.config_dir.name) input_edge_paths = [data_dir / name for name in FILENAMES] output_train_path, output_valid_path, output_test_path = config.edge_paths convert_input_data( config.entities, config.relations, config.entity_path, config.edge_paths, input_edge_paths, lhs_col=0, rhs_col=2, rel_col=1, dynamic_relations=config.dynamic_relations, ) train_config = attr.evolve(config, edge_paths=[output_train_path]) train(train_config, subprocess_init=subprocess_init) relations = [attr.evolve(r, all_negs=True) for r in config.relations] eval_config = attr.evolve( config, edge_paths=[output_test_path], relations=relations, num_uniform_negs=0) if args.filtered: filter_paths = [output_test_path, output_valid_path, output_train_path] do_eval( eval_config, evaluator=FilteredRankingEvaluator(eval_config, filter_paths), subprocess_init=subprocess_init, ) else: do_eval(eval_config, subprocess_init=subprocess_init)
def main(): parser = argparse.ArgumentParser(description='Example on FB15k') parser.add_argument('--config', default='./fb15k_config.py', help='Path to config file') parser.add_argument('-p', '--param', action='append', nargs='*') parser.add_argument('--data_dir', default='../../../data', help='where to save processed data') parser.add_argument('--no-filtered', dest='filtered', action='store_false', help='Run unfiltered eval') args = parser.parse_args() if args.param is not None: overrides = chain.from_iterable(args.param) # flatten else: overrides = None # download data data_dir = args.data_dir #fpath = utils.download_url(FB15K_URL, data_dir) #utils.extract_tar(fpath) #print('Downloaded and extracted file.') edge_paths = [os.path.join(data_dir, name) for name in FILENAMES.values()] print('edge_paths', edge_paths) convert_input_data( args.config, edge_paths, lhs_col=0, rhs_col=2, rel_col=1, ) config = parse_config(args.config, overrides) train_path = [convert_path(os.path.join(data_dir, FILENAMES['train']))] train_config = attr.evolve(config, edge_paths=train_path) train(train_config) eval_path = [convert_path(os.path.join(data_dir, FILENAMES['test']))] relations = [attr.evolve(r, all_negs=True) for r in config.relations] eval_config = attr.evolve(config, edge_paths=eval_path, relations=relations) if args.filtered: filter_paths = [ convert_path(os.path.join(data_dir, FILENAMES['test'])), convert_path(os.path.join(data_dir, FILENAMES['valid'])), convert_path(os.path.join(data_dir, FILENAMES['train'])), ] do_eval(eval_config, FilteredRankingEvaluator(eval_config, filter_paths)) else: do_eval(eval_config)
def main(): parser = argparse.ArgumentParser(description='Example on Livejournal') parser.add_argument('--config', default=DEFAULT_CONFIG, help='Path to config file') parser.add_argument('-p', '--param', action='append', nargs='*') parser.add_argument('--data_dir', default='data', help='where to save processed data') args = parser.parse_args() if args.param is not None: overrides = chain.from_iterable(args.param) # flatten else: overrides = None # download data data_dir = args.data_dir os.makedirs(data_dir, exist_ok=True) fpath = utils.download_url(URL, data_dir) fpath = utils.extract_gzip(fpath) print('Downloaded and extracted file.') # random split file for train and test random_split_file(fpath) loader = ConfigFileLoader() config = loader.load_config(args.config, overrides) edge_paths = [os.path.join(data_dir, name) for name in FILENAMES.values()] convert_input_data( config.entities, config.relations, config.entity_path, edge_paths, lhs_col=0, rhs_col=1, rel_col=None, dynamic_relations=config.dynamic_relations, ) train_path = [convert_path(os.path.join(data_dir, FILENAMES['train']))] train_config = attr.evolve(config, edge_paths=train_path) train( train_config, subprocess_init=partial(add_to_sys_path, loader.config_dir.name), ) eval_path = [convert_path(os.path.join(data_dir, FILENAMES['test']))] eval_config = attr.evolve(config, edge_paths=eval_path) do_eval( eval_config, subprocess_init=partial(add_to_sys_path, loader.config_dir.name), )
def main(): setup_logging() parser = argparse.ArgumentParser(description='Example on Livejournal') parser.add_argument('--config', default=DEFAULT_CONFIG, help='Path to config file') parser.add_argument('-p', '--param', action='append', nargs='*') parser.add_argument('--data_dir', type=Path, default='data', help='where to save processed data') args = parser.parse_args() if args.param is not None: overrides = chain.from_iterable(args.param) # flatten else: overrides = None # download data data_dir = args.data_dir data_dir.mkdir(parents=True, exist_ok=True) fpath = download_url(URL, data_dir) fpath = extract_gzip(fpath) print('Downloaded and extracted file.') # random split file for train and test random_split_file(fpath) loader = ConfigFileLoader() config = loader.load_config(args.config, overrides) set_logging_verbosity(config.verbose) subprocess_init = SubprocessInitializer() subprocess_init.register(setup_logging, config.verbose) subprocess_init.register(add_to_sys_path, loader.config_dir.name) edge_paths = [data_dir / name for name in FILENAMES.values()] convert_input_data( config.entities, config.relations, config.entity_path, edge_paths, lhs_col=0, rhs_col=1, rel_col=None, dynamic_relations=config.dynamic_relations, ) train_path = [str(convert_path(data_dir / FILENAMES['train']))] train_config = attr.evolve(config, edge_paths=train_path) train(train_config, subprocess_init=subprocess_init) eval_path = [str(convert_path(data_dir / FILENAMES['test']))] eval_config = attr.evolve(config, edge_paths=eval_path) do_eval(eval_config, subprocess_init=subprocess_init)
def main(): setup_logging() parser = argparse.ArgumentParser(description='Example on Livejournal') parser.add_argument('--config', default=DEFAULT_CONFIG, help='Path to config file') parser.add_argument('-p', '--param', action='append', nargs='*') parser.add_argument('--data_dir', type=Path, default='data', help='where to save processed data') args = parser.parse_args() # download data data_dir = args.data_dir data_dir.mkdir(parents=True, exist_ok=True) fpath = download_url(URL, data_dir) fpath = extract_gzip(fpath) print('Downloaded and extracted file.') # random split file for train and test random_split_file(fpath) loader = ConfigFileLoader() config = loader.load_config(args.config, args.param) set_logging_verbosity(config.verbose) subprocess_init = SubprocessInitializer() subprocess_init.register(setup_logging, config.verbose) subprocess_init.register(add_to_sys_path, loader.config_dir.name) input_edge_paths = [data_dir / name for name in FILENAMES] output_train_path, output_test_path = config.edge_paths convert_input_data( config.entities, config.relations, config.entity_path, config.edge_paths, input_edge_paths, TSVEdgelistReader(lhs_col=0, rhs_col=1, rel_col=None), dynamic_relations=config.dynamic_relations, ) train_config = attr.evolve(config, edge_paths=[output_train_path]) train(train_config, subprocess_init=subprocess_init) eval_config = attr.evolve(config, edge_paths=[output_test_path]) do_eval(eval_config, subprocess_init=subprocess_init)
def run_train_eval(): #将数据转为PBG可读的分区文件 convert_input_data(CONFIG_PATH, edge_paths, lhs_col=0, rhs_col=1, rel_col=None) #解析配置 config = parse_config(CONFIG_PATH) #训练配置,已分区的train_paths路径替换配置文件中的edge_paths train_config = attr.evolve(config, edge_paths=train_paths) #传入训练配置文件开始训练 train(train_config) #测试配置,已分区的eval_paths路径替换配置文件中的edge_paths eval_config = attr.evolve(config, edge_paths=eval_paths) #开始验证 do_eval(eval_config)
def test_dynamic_relations(self): relation_config = RelationSchema(name="r", lhs="el", rhs="er") base_config = ConfigSchema( dimension=10, relations=[relation_config], entities={ "el": EntitySchema(num_partitions=1), "er": EntitySchema(num_partitions=1), }, entity_path=None, # filled in later edge_paths=[], # filled in later checkpoint_path=self.checkpoint_path.name, dynamic_relations=True, global_emb=False, # Must be off for dynamic relations. workers=2, ) gen_config = attr.evolve( base_config, relations=[relation_config] * 10, dynamic_relations=False, # Must be off if more than 1 relation. ) dataset = generate_dataset(gen_config, num_entities=100, fractions=[0.04, 0.02]) self.addCleanup(dataset.cleanup) with open( os.path.join(dataset.entity_path.name, "dynamic_rel_count.txt"), "xt") as f: f.write("%d" % len(gen_config.relations)) train_config = attr.evolve( base_config, entity_path=dataset.entity_path.name, edge_paths=[dataset.relation_paths[0].name], ) eval_config = attr.evolve( base_config, relations=[attr.evolve(relation_config, all_negs=True)], entity_path=dataset.entity_path.name, edge_paths=[dataset.relation_paths[1].name], ) # Just make sure no exceptions are raised and nothing crashes. train(train_config, rank=0, subprocess_init=self.subprocess_init) self.assertCheckpointWritten(train_config, version=1) do_eval(eval_config, subprocess_init=self.subprocess_init)
def run_train_eval(): random_split_file(DATA_PATH) convert_input_data( CONFIG_PATH, edge_paths, lhs_col=0, rhs_col=1, rel_col=None, ) train_config = parse_config(CONFIG_PATH) train_config = attr.evolve(train_config, edge_paths=train_path) train(train_config) eval_config = attr.evolve(train_config, edge_paths=eval_path) do_eval(eval_config)
from torchbiggraph.config import parse_config import attr train_config = parse_config(CONFIG_PATH) train_path = [convert_path(os.path.join(DATA_DIR, FILENAMES['train']))] train_config = attr.evolve(train_config, edge_paths=train_path) from torchbiggraph.train import train train(train_config) # Time to run on liveJournal data: 17:43 - ??? ### SNIPPET 3 ###
) # =============================================== # 3. TRAIN THE EMBEDDINGS # files generated in this step: # # checkpoint_version.txt # config.json # embeddings_item_0.v7.h5 # embeddings_merchant_0.v7.h5 # embeddings_user_0.v7.h5 # model.v7.h5 # training_stats.json # =============================================== train(config, subprocess_init=subprocess_init) # ======================================================================= # 4. LOAD THE EMBEDDINGS # The final output of the process consists of 3 dictionaries - # - one for users, items, merchants - mapping entity to its embedding # ======================================================================= users_path = DATA_DIR + '/entity_names_user_0.json' items_path = DATA_DIR + '/entity_names_item_0.json' merchants_path = DATA_DIR + '/entity_names_merchant_0.json' user_emb_path = MODEL_DIR + "/embeddings_user_0.v{NUMBER_OF_EPOCHS}.h5" \ .format(NUMBER_OF_EPOCHS=raw_config['num_epochs']) item_emb_path = MODEL_DIR + "/embeddings_item_0.v{NUMBER_OF_EPOCHS}.h5" \ .format(NUMBER_OF_EPOCHS=raw_config['num_epochs']) merchant_emb_path = MODEL_DIR + "/embeddings_merchant_0.v{NUMBER_OF_EPOCHS}.h5" \
def main(): parser = argparse.ArgumentParser(description='Example on FB15k') parser.add_argument('--config', default=DEFAULT_CONFIG, help='Path to config file') parser.add_argument('-p', '--param', action='append', nargs='*') parser.add_argument('--data_dir', default='data', help='where to save processed data') parser.add_argument('--no-filtered', dest='filtered', action='store_false', help='Run unfiltered eval') args = parser.parse_args() if args.param is not None: overrides = chain.from_iterable(args.param) # flatten else: overrides = None # download data data_dir = args.data_dir fpath = utils.download_url(FB15K_URL, data_dir) utils.extract_tar(fpath) print('Downloaded and extracted file.') loader = ConfigFileLoader() config = loader.load_config(args.config, overrides) edge_paths = [os.path.join(data_dir, name) for name in FILENAMES.values()] convert_input_data( config.entities, config.relations, config.entity_path, edge_paths, lhs_col=0, rhs_col=2, rel_col=1, dynamic_relations=config.dynamic_relations, ) train_path = [convert_path(os.path.join(data_dir, FILENAMES['train']))] train_config = attr.evolve(config, edge_paths=train_path) train( train_config, subprocess_init=partial(add_to_sys_path, loader.config_dir.name), ) eval_path = [convert_path(os.path.join(data_dir, FILENAMES['test']))] relations = [attr.evolve(r, all_negs=True) for r in config.relations] eval_config = attr.evolve(config, edge_paths=eval_path, relations=relations, num_uniform_negs=0) if args.filtered: filter_paths = [ convert_path(os.path.join(data_dir, FILENAMES['test'])), convert_path(os.path.join(data_dir, FILENAMES['valid'])), convert_path(os.path.join(data_dir, FILENAMES['train'])), ] do_eval( eval_config, evaluator=FilteredRankingEvaluator(eval_config, filter_paths), subprocess_init=partial(add_to_sys_path, loader.config_dir.name), ) else: do_eval( eval_config, subprocess_init=partial(add_to_sys_path, loader.config_dir.name), )
def run(input_file: KGTKFiles, output_file: KGTKFiles, verbose: bool = False, very_verbose: bool = False, **kwargs): """ **kwargs stores all parameters providing by user """ # print(kwargs) # import modules locally import sys import typing import os import logging from pathlib import Path import json, os, h5py, gzip, torch, shutil from torchbiggraph.config import parse_config from kgtk.exceptions import KGTKException # copy missing file under kgtk/graph_embeddings from kgtk.templates.kgtkcopytemplate import KgtkCopyTemplate from kgtk.graph_embeddings.importers import TSVEdgelistReader, convert_input_data from torchbiggraph.train import train from torchbiggraph.util import SubprocessInitializer, setup_logging from kgtk.graph_embeddings.export_to_tsv import make_tsv # from torchbiggraph.converters.export_to_tsv import make_tsv try: input_kgtk_file: Path = KGTKArgumentParser.get_input_file(input_file) output_kgtk_file: Path = KGTKArgumentParser.get_output_file( output_file) # store the data into log file, then the console will not output anything if kwargs['log_file_path'] != None: log_file_path = kwargs['log_file_path'] logging.basicConfig( format='%(asctime)s - %(filename)s[line:%(lineno)d] \ - %(levelname)s: %(message)s', level=logging.DEBUG, filename=str(log_file_path), filemode='w') print( f'In Processing, Please go to {kwargs["log_file_path"]} to check details', file=sys.stderr, flush=True) tmp_folder = kwargs['temporary_directory'] tmp_tsv_path: Path = tmp_folder / f'tmp_{input_kgtk_file.name}' # tmp_tsv_path:Path = input_kgtk_file.parent/f'tmp_{input_kgtk_file.name}' # make sure the tmp folder exists, otherwise it will raise an exception if not os.path.exists(tmp_folder): os.makedirs(tmp_folder) try: #if output_kgtk_file is not empty, delete it output_kgtk_file.unlink() except: pass # didn't find, then let it go # ********************************************* # 0. PREPARE PBG TSV FILE # ********************************************* reader_options: KgtkReaderOptions = KgtkReaderOptions.from_dict(kwargs) value_options: KgtkValueOptions = KgtkValueOptions.from_dict(kwargs) error_file: typing.TextIO = sys.stdout if kwargs.get( "errors_to_stdout") else sys.stderr kct: KgtkCopyTemplate = KgtkCreateTmpTsv( input_file_path=input_kgtk_file, output_file_path=tmp_tsv_path, reader_options=reader_options, value_options=value_options, error_file=error_file, verbose=verbose, very_verbose=very_verbose, ) # prepare the graph file # create a tmp tsv file for PBG embedding logging.info('Generate the valid tsv format for embedding ...') kct.process() logging.info('Embedding file is ready...') # ********************************************* # 1. DEFINE CONFIG # ********************************************* raw_config = get_config(**kwargs) ## setting corresponding learning rate and loss function for different algorthim processed_config = config_preprocess(raw_config) # temporry output folder tmp_output_folder = Path(processed_config['entity_path']) # before moving, need to check whether the tmp folder is not empty in case of bug try: #if temporry output folder is alrady existing then delete it shutil.rmtree(tmp_output_folder) except: pass # didn't find, then let it go # ************************************************** # 2. TRANSFORM GRAPH TO A BIGGRAPH-FRIENDLY FORMAT # ************************************************** setup_logging() config = parse_config(processed_config) subprocess_init = SubprocessInitializer() input_edge_paths = [tmp_tsv_path] convert_input_data( config.entities, config.relations, config.entity_path, config.edge_paths, input_edge_paths, TSVEdgelistReader(lhs_col=0, rel_col=1, rhs_col=2), dynamic_relations=config.dynamic_relations, ) # ************************************************ # 3. TRAIN THE EMBEDDINGS #************************************************* train(config, subprocess_init=subprocess_init) # ************************************************ # 4. GENERATE THE OUTPUT # ************************************************ # entities_output = output_kgtk_file entities_output = tmp_output_folder / 'entities_output.tsv' relation_types_output = tmp_output_folder / 'relation_types_tf.tsv' with open(entities_output, "xt") as entities_tf, open(relation_types_output, "xt") as relation_types_tf: make_tsv(config, entities_tf, relation_types_tf) # output correct format for embeddings if kwargs['output_format'] == 'glove': # glove format output shutil.copyfile(entities_output, output_kgtk_file) elif kwargs['output_format'] == 'w2v': # w2v format output generate_w2v_output(entities_output, output_kgtk_file, kwargs) else: # write to the kgtk output format tsv generate_kgtk_output(entities_output, output_kgtk_file, kwargs.get('output_no_header', False), verbose, very_verbose) logging.info(f'Embeddings has been generated in {output_kgtk_file}.') # ************************************************ # 5. Garbage collection # ************************************************ if kwargs['retain_temporary_data'] == False: shutil.rmtree(kwargs['temporary_directory']) # tmp_tsv_path.unlink() # delete temporay tsv file # shutil.rmtree(tmp_output_folder) # deleter temporay output folder if kwargs["log_file_path"] != None: print('Processed Finished.', file=sys.stderr, flush=True) logging.info( f"Process Finished.\nOutput has been saved in {repr(str(output_kgtk_file))}" ) else: print( f"Process Finished.\nOutput has been saved in {repr(str(output_kgtk_file))}", file=sys.stderr, flush=True) except Exception as e: raise KGTKException(str(e))
def main(): setup_logging() parser = argparse.ArgumentParser(description="Example on FB15k") parser.add_argument("--config", default=DEFAULT_CONFIG, help="Path to config file") parser.add_argument("-p", "--param", action="append", nargs="*") parser.add_argument("--data_dir", type=Path, default="data", help="where to save processed data") parser.add_argument( "--no-filtered", dest="filtered", action="store_false", help="Run unfiltered eval", ) args = parser.parse_args() # download data data_dir = args.data_dir fpath = download_url(FB15K_URL, data_dir) extract_tar(fpath) print("Downloaded and extracted file.") loader = ConfigFileLoader() config = loader.load_config(args.config, args.param) set_logging_verbosity(config.verbose) subprocess_init = SubprocessInitializer() subprocess_init.register(setup_logging, config.verbose) subprocess_init.register(add_to_sys_path, loader.config_dir.name) input_edge_paths = [data_dir / name for name in FILENAMES] output_train_path, output_valid_path, output_test_path = config.edge_paths convert_input_data( config.entities, config.relations, config.entity_path, config.edge_paths, input_edge_paths, TSVEdgelistReader(lhs_col=0, rhs_col=2, rel_col=1), dynamic_relations=config.dynamic_relations, ) train_config = attr.evolve(config, edge_paths=[output_train_path]) train(train_config, subprocess_init=subprocess_init) relations = [attr.evolve(r, all_negs=True) for r in config.relations] eval_config = attr.evolve(config, edge_paths=[output_test_path], relations=relations, num_uniform_negs=0) if args.filtered: filter_paths = [output_test_path, output_valid_path, output_train_path] do_eval( eval_config, evaluator=FilteredRankingEvaluator(eval_config, filter_paths), subprocess_init=subprocess_init, ) else: do_eval(eval_config, subprocess_init=subprocess_init)