def __init__(self, binary_dir): self.script_path = Path(__file__).resolve() self.config_path = ( Path(__file__).resolve().parent.joinpath("autogen_ltc_backend.yaml") ) self.torch_ops_file = TORCH_MLIR_DIR.joinpath( # fmt: off "include", "torch-mlir", "Dialect", "Torch", "IR", "GeneratedTorchOps.td", # fmt: on ) assert self.torch_ops_file.exists() self.binary_dir = Path(binary_dir) assert self.binary_dir.is_dir(), f"Binary directory not found: {self.binary_dir}" self.source_yaml = self.binary_dir.joinpath("generated_native_functions.yaml") self.backend_path = TORCH_MLIR_DIR.joinpath( "python", "torch_mlir", "csrc", "base_lazy_backend" ) assert self.backend_path.is_dir() self.generated_path = self.binary_dir.joinpath( "python", "torch_mlir", "csrc", "base_lazy_backend", "generated" ) self.generated_path.mkdir(parents=True, exist_ok=True) # Create symlink to match doc structure generated_path = self.backend_path.joinpath("generated").resolve() if not generated_path.exists(): generated_path.symlink_to( os.path.relpath(self.generated_path, generated_path.parent), target_is_directory=True, ) self.tensor_class = "torch::lazy::LazyTensor" # Set the lazy value class setValueT(BaseCppType("torch::lazy", "Value"))
def run_gen_lazy_tensor( aten_path: str, source_yaml: str, output_dir: str, dry_run: bool, impl_path: Optional[str], node_base: str = default_args.node_base, node_base_hdr: Optional[str] = default_args.node_base_hdr, tensor_class: str = default_args.tensor_class, tensor_class_hdr: str = default_args.tensor_class_hdr, shape_inference_hdr: str = default_args.shape_inference_hdr, lazy_ir_generator: Type[GenLazyIR] = default_args.lazy_ir_generator, # build_in_tree is true for TS backend and affects include paths build_in_tree: bool = False, # per_operator_headers changes whether ATen/Functions.h or individual operator headers are used # it must match how ATen was built per_operator_headers: bool = False, backend_name: str = default_args.backend_name, gen_forced_fallback_code: bool = False, # the following arguments are temporary customization points for xla backend migration. # do not rely on them otherwise, they should be removed once migration is complete backend_namespace: str = "torch::lazy", get_tensorlist: str = "GetTensorList", get_tensor_or_wrap_number: str = "GetLtcTensorOrCreateForWrappedNumber", try_get_tensor: str = "TryGetLtcTensor", metrics_counter: str = 'TORCH_LAZY_FN_COUNTER("lazy::")', create_tensor: str = "LazyTensor::Create", create_from_first_tensor: bool = False, create_aten_from_ltc_tensor: str = "torch::lazy::CreateAtenFromLtcTensor", tuple_aten_from_ltc_tensors: str = "torch::lazy::TupleAtenFromLtcTensors", lazy_value_class: str = "torch::lazy::Value", lazy_tensor_ptr: str = "LazyTensorPtr", get_device_fn: str = "torch::lazy::GetBackendDevice", ) -> None: lv_tokens = lazy_value_class.split("::") lv_class = lv_tokens[-1] lv_ns = "::".join(lv_tokens[:-1]) setValueT(BaseCppType(lv_ns, lv_class)) template_dir = os.path.join(aten_path, "templates") def make_file_manager(install_dir: str) -> FileManager: return FileManager( install_dir=install_dir, template_dir=template_dir, dry_run=dry_run ) fm = make_file_manager(output_dir) native_yaml_path = os.path.join(aten_path, "native/native_functions.yaml") tags_yaml_path = os.path.join(aten_path, "native/tags.yaml") parsed_yaml = parse_native_yaml(native_yaml_path, tags_yaml_path) native_functions, backend_indices = ( parsed_yaml.native_functions, parsed_yaml.backend_indices, ) grouped_native_functions = get_grouped_native_functions(native_functions) def sort_native_function(f: Union[NativeFunctionsGroup, NativeFunction]) -> str: """ We sort the native function because of the note in concat_map_codegen. TODO(alanwaketan): Remove this sorting hack once all ops are grouped properly. """ func = f.functional.func if isinstance(f, NativeFunctionsGroup) else f.func return str(func.name.name) grouped_native_functions = sorted( grouped_native_functions, key=sort_native_function ) parsed_backend_yaml = parse_backend_yaml( source_yaml, grouped_native_functions, backend_indices ) backend_key = parsed_backend_yaml.backend_key autograd_key = parsed_backend_yaml.autograd_key cpp_namespace = parsed_backend_yaml.cpp_namespace backend_indices = parsed_backend_yaml.backend_indices full_codegen = parse_full_codegen_ops(source_yaml, grouped_native_functions) def concat_map_codegen( func: Callable[[NativeFunction], Sequence[str]], xs: Iterable[Union[NativeFunctionsGroup, NativeFunction]], *, codegenInplaceVariant: bool = False, ) -> Iterator[str]: """ We code-gen for the functional variant, which is all we need for IR classes/lowerings/shape inferences, but we only code-gen additional entries for the inplace variant for the native functions. Note: If xs is not sorted, there may be an edge case when generating IR classes. Considering relu and relu_, if we encounter relu_ before relu. we will then generate an IR class with op = at::aten::relu_ for both relu and relu_ which will cause problems for relu. TODO(alanwaketan): Once all ops are grouped properly, we should no longer need this hack. """ generated = set() def gen_key(func: FunctionSchema) -> Tuple[str, str]: # we want to generate unique entries for overloads of functional variants, # but not for inplace variants unless explicitly told `codegenInplaceVariant` return (func.name.name.base, func.name.overload_name) for x in xs: f = x.functional if isinstance(x, NativeFunctionsGroup) else x # For the 'or'd terms: # 1. codegenInplaceVariant means we can generate the in-place variant corresponding items. # 2. not f.func.name.name.inplace means the op is not a in-place variant, so we can generate the item. # 3. f.func.name.name.base not in generated means even for in-place ops we still need to generate the item # as if they were the functional variants for one time. if f.func.name in full_codegen and ( codegenInplaceVariant or not f.func.name.name.inplace or gen_key(f.func) not in generated ): generated.add(gen_key(f.func)) for r in func(f): yield r selector = SelectiveBuilder.get_nop_selector() assert backend_key is not None class_name = backend_indices[backend_key].native_function_class_name() if impl_path is not None: error_on_missing_kernels( native_functions, backend_indices, backend_key, autograd_key, class_name, impl_path, full_codegen, ) """ Validate Shape Inference Definitions Generated lazy native functions all perform shape inference, by first using a meta:: kernel if available for that op, and otherwise using a 'compute_shape_{op}' function instead. The generator knows the call signature for compute_shape_{op} becuase it matches the nativefunction (and meta::) signature, so it just has to check whether the op is structured and generate a call for one or the other. It's up to the dev to supply the missing compute_shape_{op} function, but the codegen at least warns you about this and provides the expected signature which can be copy-pasted into shape_inference.h. compute_shape_{op} functions are handwritten and should be replaced over time as ops get ported to structured kernels. See torch/csrc/lazy/core/shape_inference.cpp #READ THIS! for more information. """ if shape_inference_hdr is not None: expected_shape_infr_decls = list( concat_map_codegen( dest.GenLazyShapeInferenceDefinition( backend_indices[backend_key], tensor_class ), grouped_native_functions, codegenInplaceVariant=True, ) ) validate_shape_inference_header(shape_inference_hdr, expected_shape_infr_decls) assert class_name is not None # Generate nativefunction declarations # Note, eager registrations is set to False for the lazy TS backend as another LTC backend # may want to register their own lazy kernels instead of registering the TS ones. # The registration will lazily happen when init_ts_backend is called. gen_dispatchkey_nativefunc_headers( fm, class_name, cpp_namespace, backend_indices, grouped_native_functions, backend_key, autograd_key, backend_name, ) # Generate Dispatcher registrations which hook up the nativefunctions for dispatch_key in ( [backend_key] if autograd_key is None else [backend_key, autograd_key] ): gen_dispatcher_registrations( fm, output_dir, class_name, cpp_namespace, backend_indices, grouped_native_functions, backend_key, dispatch_key, selector, build_in_tree=build_in_tree, per_operator_headers=per_operator_headers, backend_name=backend_name, eager_registration=False, ) # Generate native function impls that build IR nodes ns_helper = NamespaceHelper(cpp_namespace) fm.write_with_template( f"{backend_key}NativeFunctions.cpp", "DispatchKeyNativeFunctions.cpp", lambda: { "includes": [ f"#include <{path}>" for path in [ tensor_class_hdr, shape_inference_hdr, "ATen/Functions.h", "ATen/MetaFunctions.h", "ATen/Operators.h", "ATen/native/CPUFallback.h", "torch/csrc/lazy/core/ir_builder.h", "torch/csrc/lazy/core/lazy_graph_executor.h", "torch/csrc/lazy/core/metrics.h", "torch/csrc/lazy/core/shape.h", f"{output_dir}/{backend_key}NativeFunctions.h", f"{output_dir}/LazyIr.h", ] + ( ["torch/csrc/lazy/ts_backend/ts_eager_fallback.h"] if gen_forced_fallback_code else [] ) ], "native_functions_include": "", "namespace_prologue": ns_helper.prologue, "namespace_epilogue": ns_helper.epilogue, "native_function_definitions": list( concat_map_codegen( dest.GenLazyNativeFuncDefinition( f"{backend_key}NativeFunctions", backend_indices[backend_key], tensor_class, gen_forced_fallback_code, backend_namespace, get_tensorlist, get_tensor_or_wrap_number, try_get_tensor, metrics_counter, create_tensor, create_from_first_tensor, create_aten_from_ltc_tensor, tuple_aten_from_ltc_tensors, lazy_tensor_ptr, get_device_fn, ), grouped_native_functions, codegenInplaceVariant=True, ) ), }, ) # Generate IR node classes fm.write_with_template( "LazyIr.h", "LazyIr.h", lambda: { "lazy_ir_sysinc": [ f"#include <{path}>" for path in [ "ATen/core/Formatting.h", "c10/core/ScalarType.h", "c10/util/Optional.h", "torch/csrc/lazy/core/hash.h", "torch/csrc/lazy/core/ir.h", "torch/csrc/lazy/core/shape.h", "vector", ] ], "lazy_ir_inc": [ f'#include "{path}"' for path in [node_base_hdr if node_base_hdr is not None else None] if path is not None ], "ir_declarations": list( concat_map_codegen( lazy_ir_generator(backend_indices[backend_key], node_base), grouped_native_functions, ) ), "namespace_prologue": ns_helper.prologue, "namespace_epilogue": ns_helper.epilogue, }, )