def setUp(self): super().setUp() self.subjects_list = create_dummy_dataset( num_images=10, size_range=(10, 20), directory=self.dir, suffix='.nii', force=False, )
def setUp(self): """Set up test fixtures, if any.""" self.dir = Path(tempfile.gettempdir()) / 'torchio' self.subjects_list = create_dummy_dataset( num_images=10, size_range=(10, 20), directory=self.dir, suffix='.nii', force=False, )
# Define training and patches sampling parameters num_epochs = 4 patch_size = 128 queue_length = 100 samples_per_volume = 10 batch_size = 4 def model(batch, sleep_time=0.1): """Dummy function to simulate a forward pass through the network""" time.sleep(sleep_time) return batch # Create a dummy dataset in the temporary directory, for this example subjects_paths = create_dummy_dataset( num_images=100, size_range=(193, 229), force=False, ) # Each element of subjects_paths is a dictionary: # subject = { # 'one_image': dict(path=path_to_one_image, type=torchio.INTENSITY), # 'another_image': dict(path=path_to_another_image, type=torchio.INTENSITY), # 'a_label': dict(path=path_to_a_label, type=torchio.LABEL), # } # Define transforms for data normalization and augmentation transforms = ( ZNormalization(), RandomNoise(std_range=(0, 0.25)), RandomAffine(scales=(0.9, 1.1), degrees=10),