Exemple #1
0
def multiple_modules(regularization: str, name: str):
    return getattr(tl, regularization)(
        torch.nn.Sequential(tl.Linear(40), tl.ReLU(), tl.Linear(20), tl.ReLU(),
                            tl.Linear(10)),
        weight_decay=1000000,
        name=name,
    )
def model():
    return torchlayers.Sequential(
        torchlayers.Conv(64),
        torchlayers.ReLU(),
        torchlayers.MaxPool(),
        torchlayers.Conv(128),
        torchlayers.ReLU(),
        torchlayers.MaxPool(),
        torchlayers.Conv(256),
        torchlayers.ReLU(),
        torchlayers.Flatten(),
    )
Exemple #3
0
def model():
    return tl.Sequential(
        tl.Conv(64),
        tl.ReLU(),
        tl.MaxPool(),
        tl.BatchNorm(),
        tl.Conv(128),
        tl.ReLU(),
        tl.MaxPool(),
        tl.Conv(256),
        tl.ReLU(),
        tl.Reshape(-1),
    )
Exemple #4
0
def model():
    return tl.Sequential(
        tl.Conv(64),
        tl.BatchNorm(),
        tl.ReLU(),
        tl.Conv(128),
        tl.BatchNorm(),
        tl.ReLU(),
        tl.Conv(256),
        tl.GlobalMaxPool(),
        tl.Linear(64),
        tl.BatchNorm(),
        tl.Linear(10),
    )
def model():
    return torchlayers.Sequential(
        torchlayers.Conv(64),
        torchlayers.BatchNorm(),
        torchlayers.ReLU(),
        torchlayers.Conv(128),
        torchlayers.BatchNorm(),
        torchlayers.ReLU(),
        torchlayers.Conv(256),
        torchlayers.GlobalMaxPool(),
        torchlayers.Linear(64),
        torchlayers.BatchNorm(),
        torchlayers.Linear(10),
    )
Exemple #6
0
def test_text_cnn():
    model = torch.nn.Sequential(
        torchlayers.Conv(64),  # specify ONLY out_channels
        torch.nn.ReLU(),  # use torch.nn wherever you wish
        torchlayers.BatchNorm(),  # BatchNormNd inferred from input
        torchlayers.Conv(128),  # Default kernel_size equal to 3
        torchlayers.ReLU(),
        torchlayers.Conv(256, kernel_size=11),  # "same" padding as default
        torchlayers.GlobalMaxPool(),  # Known from Keras
        torchlayers.Linear(10),  # Output for 10 classes
    )

    torchlayers.build(model, torch.randn(2, 300, 1))
Exemple #7
0
def model():
    return torchlayers.Sequential(
        torchlayers.Conv(64),
        torchlayers.ReLU(),
        torchlayers.MaxPool(),
        torchlayers.Residual(
            torchlayers.Sequential(
                torchlayers.Conv(64, groups=16),
                torchlayers.ReLU(),
                torchlayers.BatchNorm(),
                torchlayers.Conv(64, groups=16),
                torchlayers.ChannelShuffle(groups=16),
                torchlayers.ReLU(),
            )
        ),
        torchlayers.SqueezeExcitation(),
        torchlayers.Sequential(
            torchlayers.Dropout(),
            torchlayers.Conv(128),
            torchlayers.ReLU(),
            torchlayers.InstanceNorm(),
        ),
        torchlayers.Poly(
            torchlayers.WayPoly(
                torchlayers.Fire(128),
                torchlayers.Fire(128),
                torchlayers.Fire(128),
                torchlayers.Fire(128),
            ),
            order=2,
        ),
        torchlayers.AvgPool(),
        torchlayers.StochasticDepth(torchlayers.Fire(128, hidden_channels=64)),
        torchlayers.ReLU(),
        torchlayers.GlobalAvgPool(),
        torchlayers.Linear(64),
    )
def classification_model():
    return tl.Sequential(
        tl.Conv(64),
        tl.ReLU(),
        tl.MaxPool(),
        tl.Residual(
            tl.Sequential(
                tl.Conv(64, groups=16),
                tl.ReLU(),
                tl.GroupNorm(num_groups=4),
                tl.Conv(64, groups=16),
                tl.ChannelShuffle(groups=16),
                tl.ReLU(),
            )),
        tl.SqueezeExcitation(),
        tl.Sequential(
            tl.Dropout(),
            tl.Conv(128),
            tl.ReLU(),
            tl.InstanceNorm(),
        ),
        tl.Poly(
            tl.WayPoly(
                tl.Fire(128),
                tl.Fire(128),
                tl.Fire(128),
                tl.Fire(128),
            ),
            order=2,
        ),
        tl.AvgPool(),
        tl.StochasticDepth(tl.Fire(128, hidden_channels=64)),
        tl.ReLU(),
        tl.GlobalAvgPool(),
        tl.Linear(64),
    )
Exemple #9
0
    def __init__(self):
        super().__init__()
        self.encoder = torchlayers.Sequential(
            torchlayers.Conv(64, kernel_size=7),
            torchlayers.activations.Swish(
            ),  # Direct access to module .activations
            torchlayers.InvertedResidualBottleneck(squeeze_excitation=False),
            torchlayers.AvgPool(
            ),  # shape 64 x 128 x 128, kernel_size=2 by default
            torchlayers.HardSwish(),  # Access simply through torchlayers
            torchlayers.SeparableConv(128),  # Up number of channels to 128
            torchlayers.InvertedResidualBottleneck(
            ),  # Default with squeeze excitation
            torch.nn.ReLU(),
            torchlayers.AvgPool(
            ),  # shape 128 x 64 x 64, kernel_size=2 by default
            torchlayers.DepthwiseConv(256),  # DepthwiseConv easier to use
            # Pass input thrice through the same weights like in PolyNet
            torchlayers.Poly(torchlayers.InvertedResidualBottleneck(),
                             order=3),
            torchlayers.ReLU(),  # all torch.nn can be accessed via torchlayers
            torchlayers.MaxPool(),  # shape 256 x 32 x 32
            torchlayers.Fire(out_channels=512),  # shape 512 x 32 x 32
            torchlayers.SqueezeExcitation(hidden=64),
            torchlayers.InvertedResidualBottleneck(),
            torchlayers.MaxPool(),  # shape 512 x 16 x 16
            torchlayers.InvertedResidualBottleneck(squeeze_excitation=False),
            torchlayers.Dropout(),  # Default 0.5 and Dropout2d for images
            # Randomly Switch the last two layers with 0.5 probability
            torchlayers.StochasticDepth(
                torch.nn.Sequential(
                    torchlayers.InvertedResidualBottleneck(
                        squeeze_excitation=False),
                    torchlayers.InvertedResidualBottleneck(
                        squeeze_excitation=False),
                ),
                p=0.5,
            ),
            torchlayers.AvgPool(),  # shape 512 x 8 x 8
        )

        # Will make this one easier and repetitive
        self.decoder = torchlayers.Sequential(
            torchlayers.Poly(torchlayers.InvertedResidualBottleneck(),
                             order=2),
            # Has ICNR initialization by default as well
            torchlayers.ConvPixelShuffle(out_channels=512, upscale_factor=2),
            # Shape 512 x 16 x 16 after PixelShuffle
            torchlayers.Poly(torchlayers.InvertedResidualBottleneck(),
                             order=3),
            torchlayers.ConvPixelShuffle(out_channels=256, upscale_factor=2),
            torchlayers.StandardNormalNoise(),  # add Gaussian Noise
            # Shape 256 x 32 x 32
            torchlayers.Poly(torchlayers.InvertedResidualBottleneck(),
                             order=3),
            torchlayers.ConvPixelShuffle(out_channels=128, upscale_factor=2),
            # Shape 128 x 64 x 64
            torchlayers.Poly(torchlayers.InvertedResidualBottleneck(),
                             order=4),
            torchlayers.ConvPixelShuffle(out_channels=64, upscale_factor=2),
            # Shape 64 x 128 x 128
            torchlayers.InvertedResidualBottleneck(),
            torchlayers.Conv(256),
            torchlayers.Swish(),
            torchlayers.BatchNorm(),
            torchlayers.ConvPixelShuffle(out_channels=32, upscale_factor=2),
            # Shape 32 x 256 x 256
            torchlayers.Conv(16),
            torchlayers.Swish(),
            torchlayers.Conv(3),
            # Shape 3 x 256 x 256
        )