def __init__(self): super().__init__() self.layer = torch.nn.Linear(32, 1) for stage in ["train", "val", "test"]: acc = Accuracy() acc.reset = mock.Mock(side_effect=acc.reset) ap = AveragePrecision(num_classes=1, pos_label=1) ap.reset = mock.Mock(side_effect=ap.reset) self.add_module(f"acc_{stage}", acc) self.add_module(f"ap_{stage}", ap)
class TestLoop(Loop): def __init__(self, lite, args, model, dataloader): super().__init__() self.lite = lite self.args = args self.model = model self.dataloader = dataloader self.dataloader_iter = None self.accuracy = Accuracy().to(lite.device) self.test_loss = 0 @property def done(self) -> bool: return False def reset(self): self.dataloader_iter = enumerate(self.dataloader) self.test_loss = 0 self.accuracy.reset() def advance(self) -> None: _, (data, target) = next(self.dataloader_iter) output = self.model(data) self.test_loss += F.nll_loss(output, target) self.accuracy(output, target) if self.args.dry_run: raise StopIteration def on_run_end(self): test_loss = self.lite.all_gather(self.test_loss).sum() / len( self.dataloader.dataset) if self.lite.is_global_zero: print( f"\nTest set: Average loss: {test_loss:.4f}, Accuracy: ({self.accuracy.compute():.0f}%)\n" )
class Lite(LightningLite): """Lite is starting to look like a LightningModule.""" def run(self, hparams): self.hparams = hparams seed_everything(hparams.seed) # instead of torch.manual_seed(...) self.model = Net() [optimizer], [scheduler] = self.configure_optimizers() model, optimizer = self.setup(self.model, optimizer) if self.is_global_zero: # In multi-device training, this code will only run on the first process / GPU self.prepare_data() train_loader, test_loader = self.setup_dataloaders( self.train_dataloader(), self.train_dataloader()) self.test_acc = Accuracy().to(self.device) # EPOCH LOOP for epoch in range(1, hparams.epochs + 1): # TRAINING LOOP self.model.train() for batch_idx, batch in enumerate(train_loader): optimizer.zero_grad() loss = self.training_step(batch, batch_idx) self.backward(loss) optimizer.step() if (batch_idx == 0) or ((batch_idx + 1) % hparams.log_interval == 0): print("Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}". format( epoch, (batch_idx + 1) * self.hparams.batch_size, len(train_loader.dataset), 100.0 * batch_idx / len(train_loader), loss.item(), )) if hparams.dry_run: break scheduler.step() # TESTING LOOP self.model.eval() test_loss = 0 with torch.no_grad(): for batch_idx, batch in enumerate(test_loader): test_loss += self.test_step(batch, batch_idx) if hparams.dry_run: break test_loss = self.all_gather(test_loss).sum() / len( test_loader.dataset) print( f"\nTest set: Average loss: {test_loss:.4f}, Accuracy: ({self.test_acc.compute():.0f}%)\n" ) self.test_acc.reset() if hparams.dry_run: break if hparams.save_model: self.save(model.state_dict(), "mnist_cnn.pt") # Methods for the `LightningModule` conversion def forward(self, x): return self.model(x) def training_step(self, batch, batch_idx): """Here you compute and return the training loss and compute extra training metrics.""" x, y = batch logits = self.forward(x) loss = F.nll_loss(logits, y.long()) return loss def test_step(self, batch, batch_idx): """Here you compute and return the testing loss and compute extra testing metrics.""" x, y = batch logits = self.forward(x) loss = F.nll_loss(logits, y.long()) self.test_acc(logits, y.long()) return loss def configure_optimizers(self): optimizer = optim.Adadelta(self.model.parameters(), lr=self.hparams.lr) return [optimizer ], [StepLR(optimizer, step_size=1, gamma=self.hparams.gamma)] # Methods for the `LightningDataModule` conversion @property def transform(self): return T.Compose([T.ToTensor(), T.Normalize((0.1307, ), (0.3081, ))]) def prepare_data(self) -> None: MNIST("./data", download=True) def train_dataloader(self): train_dataset = MNIST("./data", train=True, download=False, transform=self.transform) return torch.utils.data.DataLoader(train_dataset, batch_size=self.hparams.batch_size) def test_dataloader(self): test_dataset = MNIST("./data", train=False, download=False, transform=self.transform) return torch.utils.data.DataLoader(test_dataset, batch_size=self.hparams.batch_size)
def _create_metrics(self): acc = Accuracy() acc.reset = mock.Mock(side_effect=acc.reset) ap = AveragePrecision(num_classes=1, pos_label=1) ap.reset = mock.Mock(side_effect=ap.reset) return acc, ap