def test_trivialaugmentwide(device, fill): tensor = torch.randint(0, 256, size=(3, 44, 56), dtype=torch.uint8, device=device) batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=device) transform = T.TrivialAugmentWide(fill=fill) s_transform = torch.jit.script(transform) for _ in range(25): _test_transform_vs_scripted(transform, s_transform, tensor) _test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)
row_title = [str(policy).split('.')[-1] for policy in policies] plot(imgs, row_title=row_title) #################################### # RandAugment # ~~~~~~~~~~~ # The :class:`~torchvision.transforms.RandAugment` transform automatically augments the data. augmenter = T.RandAugment() imgs = [augmenter(orig_img) for _ in range(4)] plot(imgs) #################################### # TrivialAugmentWide # ~~~~~~~~~~~~~~~~~~ # The :class:`~torchvision.transforms.TrivialAugmentWide` transform automatically augments the data. augmenter = T.TrivialAugmentWide() imgs = [augmenter(orig_img) for _ in range(4)] plot(imgs) #################################### # Randomly-applied transforms # --------------------------- # # Some transforms are randomly-applied given a probability ``p``. That is, the # transformed image may actually be the same as the original one, even when # called with the same transformer instance! # # RandomHorizontalFlip # ~~~~~~~~~~~~~~~~~~~~ # The :class:`~torchvision.transforms.RandomHorizontalFlip` transform # (see also :func:`~torchvision.transforms.functional.hflip`)