def main(_):
  """Creates the toy dataset main."""
  # Prepares dataset
  width, height = toy_helper.create_dataset()
  # Loads dataset
  x, y, concept = toy_helper.load_xyconcept()
  x_train = x[:n0, :]
  x_val = x[n0:, :]
  y_train = y[:n0, :]
  y_val = y[n0:, :]
  # Loads model
  _, _, feature_dense_model = toy_helper.load_model(
      x_train, y_train, x_val, y_val, pretrain=False)
  toy_helper.create_feature(x, width, height, feature_dense_model)
  # Runs after create_feature
  toy_helper.create_cluster(concept)
def main(_):
    n_concept = 5
    n_cluster = 5
    n = 60000
    n0 = int(n * 0.8)

    pretrain = True
    # Loads data.
    x, y, concept = toy_helper.load_xyconcept(n, pretrain)
    if not pretrain:
        x_train = x[:n0, :]
        x_val = x[n0:, :]
    y_train = y[:n0, :]
    y_val = y[n0:, :]
    all_feature_dense = np.load('all_feature_dense.npy')
    f_train = all_feature_dense[:n0, :]
    f_val = all_feature_dense[n0:, :]
    # Loads model.
    if not pretrain:
        dense2, predict, _ = toy_helper.load_model(x_train,
                                                   y_train,
                                                   x_val,
                                                   y_val,
                                                   pretrain=pretrain)
    else:
        dense2, predict, _ = toy_helper.load_model(_,
                                                   _,
                                                   _,
                                                   _,
                                                   pretrain=pretrain)
    # Loads concepts.
    concept_arraynew = np.load('concept_arraynew.npy')
    concept_arraynew2 = np.load('concept_arraynew2.npy')

    for n_concept in range(1, 10):
        print(n_concept)
        # Discovers concept with true cluster.
        finetuned_model_pr = ipca.ipca_model(concept_arraynew2,
                                             dense2,
                                             predict,
                                             f_train,
                                             y_train,
                                             f_val,
                                             y_val,
                                             n_concept,
                                             comp1=True)
        num_epoch = 5
        for _ in range(num_epoch):
            finetuned_model_pr.fit(f_train,
                                   y_train,
                                   batch_size=50,
                                   epochs=10,
                                   verbose=True,
                                   validation_data=(f_val, y_val))
        # Evaluates groupacc and get concept_matrix.
        _, _ = ipca.get_groupacc(finetuned_model_pr,
                                 concept_arraynew2,
                                 f_train,
                                 f_val,
                                 concept,
                                 n_concept,
                                 n_cluster,
                                 n0,
                                 verbose=False)
        # Discovers concepts with self-discovered clusters.
        finetuned_model_pr = ipca.ipca_model(concept_arraynew,
                                             dense2,
                                             predict,
                                             f_train,
                                             y_train,
                                             f_val,
                                             y_val,
                                             n_concept,
                                             comp1=True)
        num_epoch = 5
        for _ in range(num_epoch):
            finetuned_model_pr.fit(f_train,
                                   y_train,
                                   batch_size=50,
                                   epochs=10,
                                   verbose=True,
                                   validation_data=(f_val, y_val))
        _, _ = ipca.get_groupacc(finetuned_model_pr,
                                 concept_arraynew,
                                 f_train,
                                 f_val,
                                 concept,
                                 n_concept,
                                 n_cluster,
                                 n0,
                                 verbose=False)

    for n_concept in range(1, 10):
        print(n_concept)
        concept_matrix_ace = toy_helper.get_ace_concept(
            concept_arraynew, dense2, predict, f_val, n_concept)

        finetuned_model_pr_ace = ipca.ipca_model(concept_arraynew,
                                                 dense2,
                                                 predict,
                                                 f_train,
                                                 y_train,
                                                 f_val,
                                                 y_val,
                                                 n_concept,
                                                 verbose=True,
                                                 epochs=0,
                                                 metric='accuracy')

        finetuned_model_pr_ace.layers[-5].set_weights([concept_matrix_ace])

        print(finetuned_model_pr_ace.evaluate(f_val, y_val))

        _, _ = ipca.get_groupacc(finetuned_model_pr_ace,
                                 concept_arraynew,
                                 f_train,
                                 f_val,
                                 concept,
                                 n_concept,
                                 n_cluster,
                                 n0,
                                 verbose=False)

        concept_matrix_ace2 = toy_helper.get_ace_concept(
            concept_arraynew2, dense2, predict, f_val, n_concept)

        finetuned_model_pr_ace2 = ipca.ipca_model(concept_arraynew2,
                                                  dense2,
                                                  predict,
                                                  f_train,
                                                  y_train,
                                                  f_val,
                                                  y_val,
                                                  n_concept,
                                                  verbose=True,
                                                  epochs=0,
                                                  metric='accuracy')

        finetuned_model_pr_ace2.layers[-5].set_weights([concept_matrix_ace2])

        print(finetuned_model_pr_ace2.evaluate(f_val, y_val))

        _, _ = ipca.get_groupacc(finetuned_model_pr_ace2,
                                 concept_arraynew2,
                                 f_train,
                                 f_val,
                                 concept,
                                 n_concept,
                                 n_cluster,
                                 n0,
                                 verbose=False)

        concept_matrix_pca = toy_helper.get_pca_concept(f_train, n_concept)

        finetuned_model_pr_pca = ipca.ipca_model(concept_arraynew,
                                                 dense2,
                                                 predict,
                                                 f_train,
                                                 y_train,
                                                 f_val,
                                                 y_val,
                                                 n_concept,
                                                 verbose=True,
                                                 epochs=0,
                                                 metric='accuracy')

        finetuned_model_pr_pca.layers[-5].set_weights([concept_matrix_pca])

        print(finetuned_model_pr_pca.evaluate(f_val, y_val))

        _, _ = ipca.get_groupacc(finetuned_model_pr_pca,
                                 concept_arraynew,
                                 f_train,
                                 f_val,
                                 concept,
                                 n_concept,
                                 n_cluster,
                                 n0,
                                 verbose=False)
Exemple #3
0
def main(_):
  n_concept = 5
  n_cluster = 5
  n = 60000
  n0 = int(n * 0.8)

  pretrain = True
  # Loads data.
  x, y, concept = toy_helper.load_xyconcept(n, pretrain)
  if not pretrain:
    x_train = x[:n0, :]
    x_val = x[n0:, :]
  y_train = y[:n0, :]
  y_val = y[n0:, :]
  all_feature_dense = np.load('all_feature_dense.npy')
  f_train = all_feature_dense[:n0, :]
  f_val = all_feature_dense[n0:, :]
  # Loads model
  if not pretrain:
    dense2, predict, _ = toy_helper.load_model(
        x_train, y_train, x_val, y_val, pretrain=pretrain)
  else:
    dense2, predict, _ = toy_helper.load_model(_, _, _, _, pretrain=pretrain)
  # Loads concept
  concept_arraynew = np.load('concept_arraynew.npy')
  concept_arraynew2 = np.load('concept_arraynew2.npy')
  # Returns discovered concepts with true clusters
  finetuned_model_pr = ipca.ipca_model(concept_arraynew2, dense2, predict,
                                       f_train, y_train, f_val, y_val,
                                       n_concept)
  num_epoch = 5
  for _ in range(num_epoch):
    finetuned_model_pr.fit(
        f_train,
        y_train,
        batch_size=50,
        epochs=10,
        verbose=True,
        validation_data=(f_val, y_val))
  # Evaluates groupacc and get concept_matrix
  concept_matrix, _ = ipca.get_groupacc(
      finetuned_model_pr,
      concept_arraynew2,
      f_train,
      f_val,
      concept,
      n_concept,
      n_cluster,
      n0,
      verbose=False)
  # Saves concept matrix
  with open('concept_matrix_sup.pickle', 'wb') as handle:
    pickle.dump(concept_matrix, handle, protocol=pickle.HIGHEST_PROTOCOL)
  # Plots nearest neighbors
  feature_sp1 = np.load('feature_sp1.npy')
  segment_sp1 = np.load('segment_sp1.npy')
  feature_sp1_1000 = feature_sp1[:1000]
  segment_sp1_1000 = segment_sp1[:1000]
  ipca.plot_nearestneighbor(concept_matrix, feature_sp1_1000, segment_sp1_1000)

  # Discovered concepts with self-discovered clusters.
  finetuned_model_pr = ipca.ipca_model(concept_arraynew, dense2, predict,
                                       f_train, y_train, f_val, y_val,
                                       n_concept)
  num_epoch = 5
  for _ in range(num_epoch):
    finetuned_model_pr.fit(
        f_train,
        y_train,
        batch_size=50,
        epochs=10,
        verbose=True,
        validation_data=(f_val, y_val))
  concept_matrix, _ = toy_helper.get_groupacc(
      finetuned_model_pr,
      concept_arraynew,
      f_train,
      f_val,
      concept,
      n_concept,
      n_cluster,
      n0,
      verbose=False)
  # Saves concept matrix.
  with open('concept_matrix_unsup.pickle', 'wb') as handle:
    pickle.dump(concept_matrix, handle, protocol=pickle.HIGHEST_PROTOCOL)
  # Plots nearest neighbors.
  toy_helper.plot_nearestneighbor(concept_matrix,
                                  feature_sp1_1000, segment_sp1_1000)