def gather_topics(addresslist, site): """Downloads, parses and pickles all the topics from a list of addresses. addresslist - a list of web addresses site - site name (for bundling topics) """ for address in addresslist: parsed = parse(address, True) with open(os.path.join(train_path,site,re.findall('[^/]*$',address)[0]), 'w') as file: pickle.dump(parsed, file)
def search(request): requestDict = request.POST template = loader.get_template('search.html') if 'question' not in requestDict: return HttpResponse(template.render( RequestContext(request, {'title': 'No question', 'question': 'Please write the question URL first' }))) questionURL = requestDict['question'] parsed = tparser.parse(questionURL) if 'drupal' in questionURL: posts = choose_answers('ent-sam-dru', parsed) bestpost = choose_answer('ent-sam-dru', parsed) elif 'ubuntu' in questionURL: posts = choose_answers('ent-sam-ubu', parsed) bestpost = choose_answer('ent-sam-ubu', parsed) else: posts = choose_answers('ent-sam-mix', parsed) bestpost = choose_answer('ent-sam-mix', parsed) #pdb.set_trace() #Do some NLP magic here... #vimpdb.set_trace() #posts = nlpsort.magic(posts) #response = ['good response', 'not so good response'] #response = test.post(0) context = RequestContext(request, {'title': 'Natural language search engine', 'question': questionURL, 'response': bestpost, 'others': posts, 'link': bestpost.link}) return HttpResponse(template.render(context))