Exemple #1
0
def test_zero_count():
    """Ensure that the TPOT _zero_count preprocessor outputs the input dataframe when no. of training features is 0"""
    tpot_obj = TPOT()

    assert np.array_equal(
        tpot_obj._zero_count(training_testing_data.ix[:, -3:]),
        training_testing_data.ix[:, -3:])
Exemple #2
0
def test_rbf():
    """Assert that the TPOT RBFSampler outputs the input dataframe when # of
    training features is 0"""
    tpot_obj = TPOT()

    assert np.array_equal(tpot_obj._rbf(training_testing_data.ix[:, -3:], 0.1),
                          training_testing_data.ix[:, -3:])
Exemple #3
0
def test_fit():
    """Assert that the TPOT fit function provides an optimized pipeline"""
    tpot_obj = TPOT(random_state=42, population_size=1, generations=1, verbosity=0)
    tpot_obj.fit(training_features, training_classes)

    assert isinstance(tpot_obj._optimized_pipeline, creator.Individual)
    assert tpot_obj.gp_generation == 0
Exemple #4
0
def test_nystroem():
    """Assert that the TPOT Nystroem preprocessor outputs the input dataframe
    when the number of training features is 0"""
    tpot_obj = TPOT()

    assert np.array_equal(tpot_obj._nystroem(training_testing_data.ix[:, -3:], 1, 0.1, 1),
                          training_testing_data.ix[:, -3:])
Exemple #5
0
def test_select_fwe():
    """Ensure that the TPOT select fwe outputs the input dataframe when no. of training features is 0"""
    tpot_obj = TPOT()

    assert np.array_equal(
        tpot_obj._select_fwe(training_testing_data.ix[:, -3:], 0.005),
        training_testing_data.ix[:, -3:])
Exemple #6
0
def test_fast_ica():
    """Assert that the TPOT FastICA preprocessor outputs the input dataframe
    when the number of training features is 0"""
    tpot_obj = TPOT()

    assert np.array_equal(tpot_obj._fast_ica(training_testing_data.ix[:, -3:], 1.0),
                          training_testing_data.ix[:, -3:])
Exemple #7
0
def test_feat_agg():
    """Assert that the TPOT FeatureAgglomeration preprocessor outputs the input dataframe
    when the number of training features is 0"""
    tpot_obj = TPOT()

    assert np.array_equal(tpot_obj._feat_agg(training_testing_data.ix[:, -3:], 5, 1, 1),
                          training_testing_data.ix[:, -3:])
Exemple #8
0
def test_fast_ica():
    """Assert that the TPOT FastICA preprocessor outputs the input dataframe
    when the number of training features is 0"""
    tpot_obj = TPOT()

    assert np.array_equal(tpot_obj._fast_ica(training_testing_data.ix[:, -3:], 1.0),
                          training_testing_data.ix[:, -3:])
Exemple #9
0
def test_rbf():
    """Assert that the TPOT RBFSampler outputs the input dataframe when # of
    training features is 0"""
    tpot_obj = TPOT()

    assert np.array_equal(tpot_obj._rbf(training_testing_data.ix[:, -3:], 0.1),
                          training_testing_data.ix[:, -3:])
Exemple #10
0
def test_nystroem():
    """Assert that the TPOT Nystroem preprocessor outputs the input dataframe
    when the number of training features is 0"""
    tpot_obj = TPOT()

    assert np.array_equal(tpot_obj._nystroem(training_testing_data.ix[:, -3:], 1, 0.1, 1),
                          training_testing_data.ix[:, -3:])
Exemple #11
0
def test_feat_agg():
    """Assert that the TPOT FeatureAgglomeration preprocessor outputs the input dataframe
    when the number of training features is 0"""
    tpot_obj = TPOT()

    assert np.array_equal(tpot_obj._feat_agg(training_testing_data.ix[:, -3:], 5, 1, 1),
                          training_testing_data.ix[:, -3:])
Exemple #12
0
def test_max_abs_scaler():
    """Ensure that the TPOT max abs scaler outputs the input dataframe when no. of training features is 0"""
    tpot_obj = TPOT()

    assert np.array_equal(
        tpot_obj._max_abs_scaler(training_testing_data.ix[:, -3:]),
        training_testing_data.ix[:, -3:])
Exemple #13
0
def test_polynomial_features():
    """Ensure that the TPOT polynomial features outputs the input dataframe when no. of training features is 0"""
    tpot_obj = TPOT()

    assert np.array_equal(
        tpot_obj._polynomial_features(training_testing_data.ix[:, -3:]),
        training_testing_data.ix[:, -3:])
Exemple #14
0
def test_binarizer():
    """Ensure that the TPOT binarizer outputs the input dataframe when no. of training features is 0"""
    tpot_obj = TPOT()

    assert np.array_equal(
        tpot_obj._binarizer(training_testing_data.ix[:, -3:], 0),
        training_testing_data.ix[:, -3:])
Exemple #15
0
def test_rfe():
    """Ensure that the TPOT RFE outputs the input dataframe when no. of training features is 0"""
    tpot_obj = TPOT()

    assert np.array_equal(
        tpot_obj._rfe(training_testing_data.ix[:, -3:], 0, 0.1),
        training_testing_data.ix[:, -3:])
Exemple #16
0
def test_gen():
    """Assert that TPOT's gen_grow_safe function returns a pipeline of expected structure"""
    tpot_obj = TPOT()

    pipeline = tpot_obj._gen_grow_safe(tpot_obj._pset, 1, 3)

    assert len(pipeline) > 1
    assert pipeline[0].ret == Output_DF
Exemple #17
0
def test_gen():
    """Assert that TPOT's gen_grow_safe function returns a pipeline of expected structure"""
    tpot_obj = TPOT()

    pipeline = tpot_obj._gen_grow_safe(tpot_obj._pset, 1, 3)

    assert len(pipeline) > 1
    assert pipeline[0].ret == Output_DF
Exemple #18
0
def test_df_feature_selection():
    tpot_obj = TPOT()

    top_10_feature_pairs = ['00002', '00013', '00020', '00021', '00026', '00042',
                            '00043', '00058', '00061', 'class', 'group', 'guess']

    assert np.array_equal(tpot_obj._dt_feature_selection(training_testing_data, 10).columns.values,
                          top_10_feature_pairs)
Exemple #19
0
def test_export():
    """Assert that TPOT's export function throws a ValueError when no optimized pipeline exists"""
    tpot_obj = TPOT()

    try:
        tpot_obj.export("test_export.py")
        assert False  # Should be unreachable
    except ValueError:
        pass
Exemple #20
0
def test_train_model_and_predict():
    """Ensure that the TPOT train_model_and_predict returns the input dataframe when it has only 3 columns i.e. class, group, guess"""

    tpot_obj = TPOT()

    assert np.array_equal(
        training_testing_data.ix[:, -3:],
        tpot_obj._train_model_and_predict(training_testing_data.ix[:, -3:],
                                          SVC))
Exemple #21
0
def test_export():
    """Assert that TPOT's export function throws a ValueError when no optimized pipeline exists"""
    tpot_obj = TPOT()

    try:
        tpot_obj.export("test_export.py")
        assert False  # Should be unreachable
    except ValueError:
        pass
Exemple #22
0
def test_export():
    """Ensure that the TPOT export function raises a ValueError when no optimized pipeline exists"""

    tpot_obj = TPOT()

    try:
        tpot_obj.export('will_not_output')
        assert False  # Should be unreachable
    except ValueError:
        pass
Exemple #23
0
def test_predict():
    """Ensure that the TPOT predict function raises a ValueError when no optimized pipeline exists"""

    tpot_obj = TPOT()

    try:
        tpot_obj.predict(testing_features)
        assert False  # Should be unreachable
    except ValueError:
        pass
Exemple #24
0
def test_variance_threshold():
        tpot_obj = TPOT()
        non_feature_columns = ['class', 'group', 'guess']
        training_features = training_testing_data.loc[training_testing_data['group'] == 'training'].drop(non_feature_columns, axis=1)
        selector = VarianceThreshold(threshold=0)
        selector.fit(training_features)
        mask = selector.get_support(True)
        mask_cols = list(training_features.iloc[:, mask].columns) + non_feature_columns

        assert np.array_equal(tpot_obj._variance_threshold(training_testing_data, 0), training_testing_data[mask_cols])
Exemple #25
0
def test_score():
    """Assert that the TPOT score function raises a ValueError when no optimized pipeline exists"""

    tpot_obj = TPOT()

    try:
        tpot_obj.score(testing_features, testing_classes)
        assert False  # Should be unreachable
    except ValueError:
        pass
Exemple #26
0
def test_score():
    """Assert that the TPOT score function raises a ValueError when no optimized pipeline exists"""

    tpot_obj = TPOT()

    try:
        tpot_obj.score(testing_features, testing_classes)
        assert False  # Should be unreachable
    except ValueError:
        pass
Exemple #27
0
def test_predict():
    """Ensure that the TPOT predict function raises a ValueError when no optimized pipeline exists"""

    tpot_obj = TPOT()

    try:
        tpot_obj.predict(testing_features)
        assert False  # Should be unreachable
    except ValueError:
        pass
Exemple #28
0
def test_variance_threshold():
        tpot_obj = TPOT()
        non_feature_columns = ['class', 'group', 'guess']
        training_features = training_testing_data.loc[training_testing_data['group'] == 'training'].drop(non_feature_columns, axis=1)
        selector = VarianceThreshold(threshold=0)
        selector.fit(training_features)
        mask = selector.get_support(True)
        mask_cols = list(training_features.iloc[:, mask].columns) + non_feature_columns

        assert np.array_equal(tpot_obj._variance_threshold(training_testing_data, 0), training_testing_data[mask_cols])
Exemple #29
0
def test_fit():
    """Assert that the TPOT fit function provides an optimized pipeline"""
    tpot_obj = TPOT(random_state=42,
                    population_size=1,
                    generations=1,
                    verbosity=0)
    tpot_obj.fit(training_features, training_classes)

    assert isinstance(tpot_obj._optimized_pipeline, creator.Individual)
    assert tpot_obj.gp_generation == 0
Exemple #30
0
def test_export():
    """Ensure that the TPOT export function raises a ValueError when no optimized pipeline exists"""

    tpot_obj = TPOT()

    try:
        tpot_obj.export('will_not_output')
        assert False  # Should be unreachable
    except ValueError:
        pass
Exemple #31
0
def test_passive_aggressive_2():
    """Ensure that the TPOT PassiveAggressiveClassifier outputs the same as the sklearn classifier when C == 0.0"""

    tpot_obj = TPOT()
    result = tpot_obj._passive_aggressive(training_testing_data, 0.0, 0)
    result = result[result['group'] == 'testing']

    pagg = PassiveAggressiveClassifier(C=0.0001, loss='hinge', fit_intercept=True, random_state=42)
    pagg.fit(training_features, training_classes)

    assert np.array_equal(result['guess'].values, pagg.predict(testing_features))
Exemple #32
0
def test_knnc_2():
    """Ensure that the TPOT k-nearest neighbor classifier outputs the same as the sklearn classifier when n_neighbor=0"""

    tpot_obj = TPOT()
    result = tpot_obj._knnc(training_testing_data, 0, 0)
    result = result[result['group'] == 'testing']

    knnc = KNeighborsClassifier(n_neighbors=2, weights='uniform')
    knnc.fit(training_features, training_classes)

    assert np.array_equal(result['guess'].values, knnc.predict(testing_features))
Exemple #33
0
def test_passive_aggressive_2():
    """Ensure that the TPOT PassiveAggressiveClassifier outputs the same as the sklearn classifier when C == 0.0"""

    tpot_obj = TPOT()
    result = tpot_obj._passive_aggressive(training_testing_data, 0.0, 0)
    result = result[result['group'] == 'testing']

    pagg = PassiveAggressiveClassifier(C=0.0001, loss='hinge', fit_intercept=True, random_state=42)
    pagg.fit(training_features, training_classes)

    assert np.array_equal(result['guess'].values, pagg.predict(testing_features))
Exemple #34
0
def test_multinomial_nb():
    """Ensure that the TPOT MultinomialNB outputs the same as the sklearn MultinomialNB"""

    tpot_obj = TPOT()
    result = tpot_obj._multinomial_nb(training_testing_data, 1.0)
    result = result[result['group'] == 'testing']

    mnb = MultinomialNB(alpha=1.0, fit_prior=True)
    mnb.fit(training_features, training_classes)

    assert np.array_equal(result['guess'].values, mnb.predict(testing_features))
Exemple #35
0
def test_multinomial_nb():
    """Ensure that the TPOT MultinomialNB outputs the same as the sklearn MultinomialNB"""

    tpot_obj = TPOT()
    result = tpot_obj._multinomial_nb(training_testing_data, 1.0)
    result = result[result['group'] == 'testing']

    mnb = MultinomialNB(alpha=1.0, fit_prior=True)
    mnb.fit(training_features, training_classes)

    assert np.array_equal(result['guess'].values, mnb.predict(testing_features))
Exemple #36
0
def test_random_forest_2():
    """Ensure that the TPOT random forest method outputs the same as the sklearn random forest when min_weight>0.5"""

    tpot_obj = TPOT()
    result = tpot_obj._random_forest(training_testing_data, 0.6)
    result = result[result['group'] == 'testing']

    rfc = RandomForestClassifier(n_estimators=500, min_weight_fraction_leaf=0.5, random_state=42, n_jobs=-1)
    rfc.fit(training_features, training_classes)

    assert np.array_equal(result['guess'].values, rfc.predict(testing_features))
Exemple #37
0
def test_knnc_2():
    """Ensure that the TPOT k-nearest neighbor classifier outputs the same as the sklearn classifier when n_neighbor=0"""

    tpot_obj = TPOT()
    result = tpot_obj._knnc(training_testing_data, 0, 0)
    result = result[result['group'] == 'testing']

    knnc = KNeighborsClassifier(n_neighbors=2, weights='uniform')
    knnc.fit(training_features, training_classes)

    assert np.array_equal(result['guess'].values, knnc.predict(testing_features))
Exemple #38
0
def test_bernoulli_nb():
    """Ensure that the TPOT BernoulliNB outputs the same as the sklearn BernoulliNB"""

    tpot_obj = TPOT()
    result = tpot_obj._bernoulli_nb(training_testing_data, 1.0, 0.0)
    result = result[result['group'] == 'testing']

    bnb = BernoulliNB(alpha=1.0, binarize=0.0, fit_prior=True)
    bnb.fit(training_features, training_classes)

    assert np.array_equal(result['guess'].values, bnb.predict(testing_features))
Exemple #39
0
def test_extra_trees_3():
    """Ensure that the TPOT ExtraTreesClassifier outputs the same as the sklearn version when min_weight > 0.5"""
    tpot_obj = TPOT()

    result = tpot_obj._extra_trees(training_testing_data, 0, 1., 0.6)
    result = result[result['group'] == 'testing']

    etc = ExtraTreesClassifier(n_estimators=500, random_state=42, max_features=1., min_weight_fraction_leaf=0.5, criterion='gini')
    etc.fit(training_features, training_classes)

    assert np.array_equal(result['guess'].values, etc.predict(testing_features))
Exemple #40
0
def test_xgboost():
    """Ensure that the TPOT xgboost method outputs the same as the xgboost classfier method"""

    tpot_obj = TPOT()
    result = tpot_obj._xgradient_boosting(training_testing_data, n_estimators=100, learning_rate=0, max_depth=3)
    result = result[result['group'] == 'testing']

    xgb = XGBClassifier(n_estimators=100, learning_rate=0.0001, max_depth=3, seed=42)
    xgb.fit(training_features, training_classes)

    assert np.array_equal(result['guess'].values, xgb.predict(testing_features))
Exemple #41
0
def test_random_forest():
    """Ensure that the TPOT random forest method outputs the same as the sklearn random forest"""

    tpot_obj = TPOT()
    result = tpot_obj._random_forest(training_testing_data, 100, 0)
    result = result[result['group'] == 'testing']

    rfc = RandomForestClassifier(n_estimators=100, max_features='auto', random_state=42, n_jobs=-1)
    rfc.fit(training_features, training_classes)

    assert np.array_equal(result['guess'].values, rfc.predict(testing_features))
Exemple #42
0
def test_decision_tree():
    """Ensure that the TPOT decision tree method outputs the same as the sklearn decision tree"""

    tpot_obj = TPOT()
    result = tpot_obj._decision_tree(training_testing_data, 0, 0)
    result = result[result['group'] == 'testing']

    dtc = DecisionTreeClassifier(max_features='auto', max_depth=None, random_state=42)
    dtc.fit(training_features, training_classes)

    assert np.array_equal(result['guess'].values, dtc.predict(testing_features))
Exemple #43
0
def test_gaussian_nb():
    """Ensure that the TPOT GaussianNB outputs the same as the sklearn GaussianNB"""

    tpot_obj = TPOT()
    result = tpot_obj._gaussian_nb(training_testing_data)
    result = result[result['group'] == 'testing']

    gnb = GaussianNB()
    gnb.fit(training_features, training_classes)

    assert np.array_equal(result['guess'].values, gnb.predict(testing_features))
Exemple #44
0
def test_ada_boost_2():
    """Ensure that the TPOT AdaBoostClassifier outputs the same as the sklearn classifer when learning_rate == 0.0"""

    tpot_obj = TPOT()
    result = tpot_obj._ada_boost(training_testing_data, 0.0)
    result = result[result['group'] == 'testing']

    adaboost = AdaBoostClassifier(n_estimators=500, random_state=42, learning_rate=0.0001)
    adaboost.fit(training_features, training_classes)

    assert np.array_equal(result['guess'].values, adaboost.predict(testing_features))
Exemple #45
0
def test_ada_boost_2():
    """Ensure that the TPOT AdaBoostClassifier outputs the same as the sklearn classifer when learning_rate == 0.0"""

    tpot_obj = TPOT()
    result = tpot_obj._ada_boost(training_testing_data, 0.0)
    result = result[result['group'] == 'testing']

    adaboost = AdaBoostClassifier(n_estimators=500, random_state=42, learning_rate=0.0001)
    adaboost.fit(training_features, training_classes)

    assert np.array_equal(result['guess'].values, adaboost.predict(testing_features))
Exemple #46
0
def test_logistic_regression():
    """Ensure that the TPOT logistic regression classifier outputs the same as the sklearn LogisticRegression"""

    tpot_obj = TPOT()
    result = tpot_obj._logistic_regression(training_testing_data, 5., 0, True)
    result = result[result['group'] == 'testing']

    lrc = LogisticRegression(C=5., penalty='l1', dual=False, random_state=42)
    lrc.fit(training_features, training_classes)

    assert np.array_equal(result['guess'].values, lrc.predict(testing_features))
Exemple #47
0
def test_extra_trees_3():
    """Ensure that the TPOT ExtraTreesClassifier outputs the same as the sklearn version when min_weight > 0.5"""
    tpot_obj = TPOT()

    result = tpot_obj._extra_trees(training_testing_data, 0, 1., 0.6)
    result = result[result['group'] == 'testing']

    etc = ExtraTreesClassifier(n_estimators=500, random_state=42, max_features=1., min_weight_fraction_leaf=0.5, criterion='gini')
    etc.fit(training_features, training_classes)

    assert np.array_equal(result['guess'].values, etc.predict(testing_features))
Exemple #48
0
def test_svc_2():
    """Ensure that the TPOT random forest method outputs the same as the sklearn svc when C<0.0001"""

    tpot_obj = TPOT()
    result = tpot_obj._svc(training_testing_data, 0.00001)
    result = result[result['group'] == 'testing']

    svc = SVC(C=0.0001, random_state=42)
    svc.fit(training_features, training_classes)

    assert np.array_equal(result['guess'].values, svc.predict(testing_features))
Exemple #49
0
def test_linear_svc_2():
    """Ensure that the TPOT LinearSVC outputs the same as the sklearn LinearSVC when C == 0.0"""

    tpot_obj = TPOT()
    result = tpot_obj._linear_svc(training_testing_data, 0.0, 0, True)
    result = result[result['group'] == 'testing']

    lsvc = LinearSVC(C=0.0001, penalty='l1', dual=False, random_state=42)
    lsvc.fit(training_features, training_classes)

    assert np.array_equal(result['guess'].values, lsvc.predict(testing_features))
Exemple #50
0
def test_bernoulli_nb():
    """Ensure that the TPOT BernoulliNB outputs the same as the sklearn BernoulliNB"""

    tpot_obj = TPOT()
    result = tpot_obj._bernoulli_nb(training_testing_data, 1.0, 0.0)
    result = result[result['group'] == 'testing']

    bnb = BernoulliNB(alpha=1.0, binarize=0.0, fit_prior=True)
    bnb.fit(training_features, training_classes)

    assert np.array_equal(result['guess'].values, bnb.predict(testing_features))
Exemple #51
0
def test_decision_tree_3():
    """Ensure that the TPOT decision tree method outputs the same as the sklearn decision tree when min_weight>0.5"""

    tpot_obj = TPOT()
    result = tpot_obj._decision_tree(training_testing_data, 0.6)
    result = result[result['group'] == 'testing']

    dtc = DecisionTreeClassifier(min_weight_fraction_leaf=0.5, random_state=42)
    dtc.fit(training_features, training_classes)

    assert np.array_equal(result['guess'].values, dtc.predict(testing_features))
Exemple #52
0
def test_gaussian_nb():
    """Ensure that the TPOT GaussianNB outputs the same as the sklearn GaussianNB"""

    tpot_obj = TPOT()
    result = tpot_obj._gaussian_nb(training_testing_data)
    result = result[result['group'] == 'testing']

    gnb = GaussianNB()
    gnb.fit(training_features, training_classes)

    assert np.array_equal(result['guess'].values, gnb.predict(testing_features))
Exemple #53
0
def test_random_forest_2():
    """Ensure that the TPOT random forest method outputs the same as the sklearn random forest when min_weight>0.5"""

    tpot_obj = TPOT()
    result = tpot_obj._random_forest(training_testing_data, 0.6)
    result = result[result['group'] == 'testing']

    rfc = RandomForestClassifier(n_estimators=500, min_weight_fraction_leaf=0.5, random_state=42, n_jobs=-1)
    rfc.fit(training_features, training_classes)

    assert np.array_equal(result['guess'].values, rfc.predict(testing_features))
Exemple #54
0
def test_linear_svc_2():
    """Ensure that the TPOT LinearSVC outputs the same as the sklearn LinearSVC when C == 0.0"""

    tpot_obj = TPOT()
    result = tpot_obj._linear_svc(training_testing_data, 0.0, 0, True)
    result = result[result['group'] == 'testing']

    lsvc = LinearSVC(C=0.0001, penalty='l1', dual=False, random_state=42)
    lsvc.fit(training_features, training_classes)

    assert np.array_equal(result['guess'].values, lsvc.predict(testing_features))
Exemple #55
0
def test_logistic_regression():
    """Ensure that the TPOT logistic regression classifier outputs the same as the sklearn LogisticRegression"""

    tpot_obj = TPOT()
    result = tpot_obj._logistic_regression(training_testing_data, 5., 0, True)
    result = result[result['group'] == 'testing']

    lrc = LogisticRegression(C=5., penalty='l1', dual=False, random_state=42)
    lrc.fit(training_features, training_classes)

    assert np.array_equal(result['guess'].values, lrc.predict(testing_features))
Exemple #56
0
def test_df_feature_selection():
    tpot_obj = TPOT()

    top_10_feature_pairs = [
        '00002', '00013', '00020', '00021', '00026', '00042', '00043', '00058',
        '00061', 'class', 'group', 'guess'
    ]

    assert np.array_equal(
        tpot_obj.dt_feature_selection(training_testing_data,
                                      10).columns.values, top_10_feature_pairs)
Exemple #57
0
def test_combine_dfs_2():
    """Check combine_dfs operator when the dataframes are equal"""
    tpot_obj = TPOT()

    df1 = pd.DataFrame({'a': range(10), 'b': range(10, 20)})

    df2 = pd.DataFrame({'a': range(10), 'b': range(10, 20)})

    combined_df = pd.DataFrame({'a': range(10), 'b': range(10, 20)})

    assert tpot_obj._combine_dfs(df1, df2).equals(combined_df)
Exemple #58
0
def test_gradient_boosting_2():
    """Ensure that the TPOT GradientBoostingClassifier outputs the same as the sklearn classifier when max_depth < 1"""

    tpot_obj = TPOT()
    result = tpot_obj._gradient_boosting(training_testing_data, 1.0, 0)
    result = result[result['group'] == 'testing']

    gbc = GradientBoostingClassifier(learning_rate=1.0, max_depth=1, n_estimators=500, random_state=42)
    gbc.fit(training_features, training_classes)

    assert np.array_equal(result['guess'].values, gbc.predict(testing_features))
Exemple #59
0
def test_linear_svc():
    """Ensure that the TPOT LinearSVC outputs the same as the sklearn LinearSVC"""

    tpot_obj = TPOT()
    result = tpot_obj._linear_svc(training_testing_data, 1.0, 0, 0)
    result = result[result['group'] == 'testing']

    lsvc = LinearSVC(C=1.0, loss='hinge', fit_intercept=True, random_state=42)
    lsvc.fit(training_features, training_classes)

    assert np.array_equal(result['guess'].values, lsvc.predict(testing_features))
Exemple #60
0
def test_predict_2():
    """Ensure that the TPOT predict function returns a DataFrame of shape (num_testing_rows,)"""

    tpot_obj = TPOT()
    tpot_obj._training_classes = training_classes
    tpot_obj._training_features = training_features
    tpot_obj._optimized_pipeline = creator.Individual.\
        from_string('_logistic_regression(input_df, 1.0, 0, True)', tpot_obj._pset)

    result = tpot_obj.predict(testing_features)

    assert result.shape == (testing_features.shape[0],)