Exemple #1
0
def calc_kdj1(df):
    kdj1 = KDJ(df, 45, 15, 15)
    kdj2 = KDJ(df, 45 * 5, 15 * 5, 15 * 5)
    kdj3 = KDJ(df, 45 * 5 * 5, 15 * 5 * 5, 15 * 5 * 5)
    kdj4 = KDJ(df, 45 * 5 * 5 * 5, 15 * 5 * 5 * 5, 15 * 5 * 5 * 5)

    df['k1'] = kdj1['KDJ_K']
    df['d1'] = kdj1['KDJ_D']
    df['j1'] = kdj1['KDJ_J']
    df['e1'] = EMA(kdj1['KDJ_J'], 5)

    df['k2'] = kdj2['KDJ_K']
    df['d2'] = kdj2['KDJ_D']
    df['j2'] = kdj2['KDJ_J']
    df['e2'] = EMA(kdj2['KDJ_J'], 5 * 5)

    df['k3'] = kdj3['KDJ_K']
    df['d3'] = kdj3['KDJ_D']
    df['j3'] = kdj3['KDJ_J']
    df['e3'] = EMA(kdj3['KDJ_J'], 5 * 5 * 5)

    df['k4'] = kdj4['KDJ_K']
    df['d4'] = kdj4['KDJ_D']
    df['j4'] = kdj4['KDJ_J']
    df['e4'] = EMA(kdj4['KDJ_J'], 5 * 5 * 5 * 5)

    # 计算KDJ值的斜率 ------------ begin -----------------------------------
    """
    df['x1'] = np.nan
    df['x2'] = np.nan
    df['x3'] = np.nan
    df['x4'] = np.nan
    n = 6
    x = np.arange( n )
    yy = df['e1'].values
    for i in range( n-1, len( df ) ):
        y1 = df['e1'][i-n+1:i+1].values
        y2 = df['e2'][i-n+1:i+1].values
        y3 = df['e3'][i-n+1:i+1].values
        y4 = df['e4'][i-n+1:i+1].values
        # print(x)
        # print(y)
        z1 = np.polyfit( x, y1, 3 )
        z2 = np.polyfit( x, y2, 3 )
        z3 = np.polyfit( x, y3, 3 )
        z4 = np.polyfit( x, y4, 3 )
        # print('zzzzzz',z)
        r1 = z1[0]*x[n-1]*x[n-1]+z1[1]*x[n-1]+z1[2]
        r2 = z2[0]*x[n-1]*x[n-1]+z2[1]*x[n-1]+z2[2]
        r3 = z3[0]*x[n-1]*x[n-1]+z3[1]*x[n-1]+z3[2]
        r4 = z4[0]*x[n-1]*x[n-1]+z4[1]*x[n-1]+z4[2]
        df['x1'].iat[i] = r1
        df['x2'].iat[i] = r2
        df['x3'].iat[i] = r3
        df['x4'].iat[i] = r4
    """
    # 计算KDJ值的斜率 ------------- end -----------------------------------
    return df
Exemple #2
0
def makePicture(code, name):
    #df = ts.get_hist_data(code, start=begin_time, end=end_time)
    #df = ts.get_hist_data('600848')
    ret = md.init("13601380996","it@iZ23psatkqsZ")
    df = tt.get_bars("SHFE.ru1709", 3600*4,  "2017-02-01 09:00:00", "2017-06-02 23:05:00")
    print("kkkkkkkkkkkkkkkkkkkkkkkkkkkk!!!")
    print("df:",df)
    #df = df.sort_index(0)
#    df.plot()

    C = df['close']  # 切片收盘价
    C30 = C.tail(30)  # 取最后30个收盘价数据
    MA30 = C30.mean()  # 均值
    print("MA30:",MA30)
    xx = MA(C,5)
    print("MA30 ==== ",xx)
    kdj = KDJ(df,9,3,3)
    print("KDJ ==== ", kdj)
    drawPic(df, code, name)
def calc_kdj_ma_ema(df):
    """
    # KDJ1
    df['k1'] = np.nan
    df['d1'] = np.nan
    df['j1'] = np.nan
    df['e1'] = np.nan
    df['x1'] = np.nan

    # KDJ2
    df['k2'] = np.nan
    df['d2'] = np.nan
    df['j2'] = np.nan
    df['e2'] = np.nan
    df['x2'] = np.nan

    # KDJ3
    df['k3'] = np.nan
    df['d3'] = np.nan
    df['j3'] = np.nan
    df['e3'] = np.nan
    df['x3'] = np.nan

    # KDJ4
    df['k4'] = np.nan
    df['d4'] = np.nan
    df['j4'] = np.nan
    df['e4'] = np.nan
    df['x4'] = np.nan

    # MA

    df['ma5'] = np.nan
    df['ma10'] = np.nan
    df['ma20'] = np.nan
    df['ma30'] = np.nan
    df['ma40'] = np.nan
    df['ma60'] = np.nan
    df['ma89'] = np.nan
    df['ma144'] = np.nan
    df['ma233'] = np.nan
    df['ma377'] = np.nan
    df['ma610'] = np.nan
    """
    # ------------------------------------------------------------
    df['ma5'] = MA(df['close'], 5)
    df['ma10'] = MA(df['close'], 10)
    df['ma20'] = MA(df['close'], 20)
    df['ma30'] = MA(df['close'], 30)
    df['ma40'] = MA(df['close'], 40)
    df['ma60'] = MA(df['close'], 60)
    df['ma89'] = MA(df['close'], 89)
    df['ma144'] = MA(df['close'], 144)
    df['ma233'] = MA(df['close'], 233)
    df['ma377'] = MA(df['close'], 377)
    df['ma610'] = MA(df['close'], 610)

    kdj1 = KDJ(df, 45, 15, 15)
    kdj2 = KDJ(df, 45 * 5, 15 * 5, 15 * 5)
    kdj3 = KDJ(df, 45 * 5 * 5, 15 * 5 * 5, 15 * 5 * 5)
    kdj4 = KDJ(df, 45 * 5 * 5 * 5, 15 * 5 * 5 * 5, 15 * 5 * 5 * 5)
    """
    #ema1 = EMA( kdj1['KDJ_J'], 5 )
    #ema2 = EMA( kdj2['KDJ_J'], 5*5 )
    #ema3 = EMA( kdj3['KDJ_J'], 5*5*5 )
    #ema4 = EMA( kdj4['KDJ_J'], 5*5*5*5 )
    """

    df['k1'] = kdj1['KDJ_K']
    df['d1'] = kdj1['KDJ_D']
    df['j1'] = kdj1['KDJ_J']
    df['e1'] = EMA(kdj1['KDJ_J'], 5)

    df['k2'] = kdj2['KDJ_K']
    df['d2'] = kdj2['KDJ_D']
    df['j2'] = kdj2['KDJ_J']
    df['e2'] = EMA(kdj2['KDJ_J'], 5 * 5)

    df['k3'] = kdj3['KDJ_K']
    df['d3'] = kdj3['KDJ_D']
    df['j3'] = kdj3['KDJ_J']
    df['e3'] = EMA(kdj3['KDJ_J'], 5 * 5 * 5)

    df['k4'] = kdj4['KDJ_K']
    df['d4'] = kdj4['KDJ_D']
    df['j4'] = kdj4['KDJ_J']
    df['e4'] = EMA(kdj4['KDJ_J'], 5 * 5 * 5 * 5)

    df['x1'] = np.nan
    df['x2'] = np.nan
    df['x3'] = np.nan
    df['x4'] = np.nan

    n = 6
    x = np.arange(n)

    yy = df['e1'].values
    for i in range(n - 1, len(df)):
        y1 = df['e1'][i - n + 1:i + 1].values
        y2 = df['e2'][i - n + 1:i + 1].values
        y3 = df['e3'][i - n + 1:i + 1].values
        y4 = df['e4'][i - n + 1:i + 1].values
        # print(x)
        # print(y)
        z1 = np.polyfit(x, y1, 3)
        z2 = np.polyfit(x, y2, 3)
        z3 = np.polyfit(x, y3, 3)
        z4 = np.polyfit(x, y4, 3)
        # print('zzzzzz',z)
        r1 = z1[0] * x[n - 1] * x[n - 1] + z1[1] * x[n - 1] + z1[2]
        r2 = z2[0] * x[n - 1] * x[n - 1] + z2[1] * x[n - 1] + z2[2]
        r3 = z3[0] * x[n - 1] * x[n - 1] + z3[1] * x[n - 1] + z3[2]
        r4 = z4[0] * x[n - 1] * x[n - 1] + z4[1] * x[n - 1] + z4[2]
        df['x1'].iat[i] = r1
        df['x2'].iat[i] = r2
        df['x3'].iat[i] = r3
        df['x4'].iat[i] = r4
    return df
Exemple #4
0
def calc_kdj(df, x):
    loc1 = 5
    loc2 = 20
    loc3 = 50
    loc4 = 80
    loc5 = 95

    N1 = -1
    N2 = -1
    N3 = -1
    var = 4
    if (x == 1):
        N1 = 9 * var
        N2 = 3 * var
        N3 = 3 * var
        N4 = 5
        k = 'k1'
        d = 'd1'
        j = 'j1'
        e = 'e1'  # E 值: j值 的ema
        jpos = 'jpos1'  # J 值拐点位置
        jupd = 'jupd1'  # J 值 上升或下降
        jepos = 'jepos1'  # J 值 穿越 E值 的位置
        jeupd = 'jeupd1'  # J 值 在 E值 的上还是下
        jloc = 'jloc1'  # J 值 的位置 1 ( <loc1 )  2:( loc1<x<loc2 ) 3:< loc2<x<loc3 ) 4: ......

    if (x == 2):
        N1 = 9 * var * var
        N2 = 3 * var * var
        N3 = 3 * var * var
        N4 = 5 * var
        k = 'k2'
        d = 'd2'
        j = 'j2'
        e = 'e2'  # E 值: j值 的ema
        jpos = 'jpos2'  # J 值拐点位置
        jupd = 'jupd2'  # J 值 上升或下降
        jepos = 'jepos2'  # J 值 穿越 E值 的位置
        jeupd = 'jeupd2'  # J 值 在 E值 的上还是下
        jloc = 'jloc2'  # J 值 的位置 1 ( <loc1 )  2:( loc1<x<loc2 ) 3:< loc2<x<loc3 ) 4: ......

    if (x == 3):
        N1 = 9 * var * var * var
        N2 = 3 * var * var * var
        N3 = 3 * var * var * var
        N4 = 5 * var * var
        k = 'k3'
        d = 'd3'
        j = 'j3'
        e = 'e3'  # E 值: j值 的ema
        jpos = 'jpos3'  # J 值拐点位置
        jupd = 'jupd3'  # J 值 上升或下降
        jepos = 'jepos3'  # J 值 穿越 E值 的位置
        jeupd = 'jeupd3'  # J 值 在 E值 的上还是下
        jloc = 'jloc3'  # J 值 的位置 1 ( <loc1 )  2:( loc1<x<loc2 ) 3:< loc2<x<loc3 ) 4: ......

    if (x == 4):
        N1 = 9 * var * var * var * var
        N2 = 3 * var * var * var * var
        N3 = 3 * var * var * var * var
        N4 = 5 * var * var * var * var
        k = 'k4'
        d = 'd4'
        j = 'j4'
        e = 'e4'  # E 值: j值 的ema
        jpos = 'jpos4'  # J 值拐点位置
        jupd = 'jupd4'  # J 值 上升或下降
        jepos = 'jepos4'  # J 值 穿越 E值 的位置
        jeupd = 'jeupd4'  # J 值 在 E值 的上还是下
        jloc = 'jloc4'  # J 值 的位置 1 ( <loc1 )  2:( loc1<x<loc2 ) 3:< loc2<x<loc3 ) 4: ......

    rt = KDJ(df, N1, N2, N3)
    df[k] = rt['KDJ_K']
    df[d] = rt['KDJ_D']
    df[j] = rt['KDJ_J']
    df[e] = EMA(rt['KDJ_J'], N4)

    jj = df[j].values
    ee = df[e].values

    df[jpos] = np.nan
    df[jupd] = np.nan
    df[jepos] = np.nan
    df[jeupd] = np.nan
    df[jloc] = np.nan

    df[jpos].iat[0] = 0
    df[jupd].iat[0] = 1
    df[jepos].iat[0] = 0
    df[jeupd].iat[0] = 1

    ddxx1 = np.nan
    ddxx0 = np.nan

    for i in range(2, len(df)):
        df[jpos].iat[i] = 0
        df[jupd].iat[i] = 1
        df[jepos].iat[i] = 0
        df[jeupd].iat[i] = 1

        # ======================= j value location from 0 to 110? ==========
        if (jj[i] <= loc1):
            df[jloc].iat[i] = 1
        elif (loc1 < jj[i] and jj[i] <= loc2):
            df[jloc].iat[i] = 2
        elif (loc2 < jj[i] and jj[i] <= loc3):
            df[jloc].iat[i] = 3
        elif (loc3 < jj[i] and jj[i] <= loc4):
            df[jloc].iat[i] = 4
        elif (loc4 < jj[i] and jj[i] <= loc5):
            df[jloc].iat[i] = 5
        elif (loc5 < jj[i]):
            df[jloc].iat[i] = 6

        # ======================= j value > j(-1) value ? =================
        cha1 = jj[i] - jj[i - 1]
        cha0 = jj[i - 1] - jj[i - 2]
        if (cha1 > 0):
            df[jupd].iat[i] = 1
            if (cha0 > 0):
                df[jpos].iat[i] = df[jpos].iat[i - 1]
            elif (cha0 < 0):
                df[jpos].iat[i] = i
        elif (cha1 < 0):
            df[jupd].iat[i] = -1
            if (cha0 > 0):
                df[jpos].iat[i] = i
            elif (cha0 < 0):
                df[jpos].iat[i] = df[jpos].iat[i - 1]

        # ======================= j value > e value ? =================
        cha1 = jj[i] - ee[i - 1]
        cha0 = jj[i - 1] - ee[i - 2]
        if (cha1 > 0):
            df[jeupd].iat[i] = 1
            if (cha0 > 0):
                df[jepos].iat[i] = df[jepos].iat[i - 1]
            elif (cha0 < 0):
                df[jepos].iat[i] = i
        elif (cha1 < 0):
            df[jeupd].iat[i] = -1
            if (cha0 > 0):
                df[jepos].iat[i] = i
            elif (cha0 < 0):
                df[jepos].iat[i] = df[jepos].iat[i - 1]
    return df
Exemple #5
0
def drawPic(df, code, name):
    mondays = WeekdayLocator(MONDAY)            # 主要刻度
    alldays = DayLocator()                      # 次要刻度
    #weekFormatter = DateFormatter('%b %d')     # 如:Jan 12
    mondayFormatter = DateFormatter('%m-%d-%Y') # 如:2-29-2015
    dayFormatter = DateFormatter('%d')          # 如:12



    plt.figure(2)  # 创建图表2
    ax1 = plt.subplot(211)  # 在图表2中创建子图1
    ax2 = plt.subplot(212)  # 在图表2中创建子图2
    plt.sca(ax1)
    ax1.xaxis.set_major_locator(mondays)
    ax1.xaxis.set_minor_locator(alldays)
    ax1.xaxis.set_major_formatter(mondayFormatter)
    _candlestick(ax1, df, width=0.6, colorup='r', colordown='g')
    ax1.xaxis_date()
    plt.setp(plt.gca().get_xticklabels(), rotation=45, horizontalalignment='right')
    #ax.grid(True)

    plt.sca(ax2)
    kdj = KDJ(df,45,15,15)
    JJ=pd.DataFrame({'KDJ_J':kdj['KDJ_J']})
    ema = EMA(JJ,5)

    kdj2 = KDJ(df,45*5,15*5,15*5)
    #print("kdj2222222222222222222222222222222222222222222:",kdj2)
    kdj3 = KDJ(df, 45 * 5*5, 15 * 5*5, 15 * 5*5)
    kdj4 = KDJ(df, 45 * 5 * 5*5, 15 * 5 * 5*5, 15 * 5 * 5*5)


    JJ2 = pd.DataFrame({'KDJ_J': kdj2['KDJ_J']})
    JJ3 = pd.DataFrame({'KDJ_J': kdj3['KDJ_J']})
    JJ4 = pd.DataFrame({'KDJ_J': kdj4['KDJ_J']})

    ema2 = EMA(JJ2, 5*5)
    ema3 = EMA(JJ3, 5 * 5*5)
    ema4 = EMA(JJ4, 5 * 5*5*5)

    #print('ema:',ema)
    #print("KDJ ==== ", kdj)
    xx=[]
    t=0
    for DAT,DD in kdj.iterrows():
        t=t+10
        xx.append(t)

    #print(xx)
    plt.sca(ax2)

    #plt.plot(xx, ema, linewidth=0.5)
    #plt.plot(xx, kdj['KDJ_J'], linewidth=0.5)

    #plt.plot(xx, ema2, linewidth=0.5)
    #plt.plot(xx, kdj2['KDJ_J'], linewidth=0.5)

    #plt.plot(xx, ema3, linewidth=0.5)
    #plt.plot(xx, kdj3['KDJ_J'], linewidth=0.5)

    plt.plot(xx, ema4, linewidth=0.5)
    plt.plot(xx, kdj4['KDJ_J'], linewidth=0.5)

    print("ema44444444444444444444444444444444444:",ema4)
    print("len:of df:",len(df))

    plt.show()