def test_all_refracted(self):
     dir = N.c_[[1, 1, -1], [-1, 1, -1], [-1, -1, -1], [1, -1, -1]] / N.sqrt(3)
     position = N.c_[[0,0,1], [1,-1,1], [1,1,1], [-1,1,1]]
     en = N.r_[100, 200, 300, 400]
     bund = RayBundle(position, dir, energy=en, ref_index=N.ones(4))
     
     gm = FlatGeometryManager()
     prm = gm.find_intersections(N.eye(4), bund)
     refractive = optics_callables.RefractiveHomogenous(1,1.5)
     selector = N.array([0, 1, 3])
     gm.select_rays(selector)
     outg = refractive(gm, bund, selector)
     
     correct_pts = N.zeros((3,4))
     correct_pts[:2,0] = 1
     correct_pts = N.hstack((correct_pts[:,selector], correct_pts[:,selector]))
     N.testing.assert_array_equal(outg.get_vertices(), correct_pts)
     
     norm = N.c_[gm.get_normals()[:,0]]
     correct_refl_cos = -(dir*norm).sum(axis=0)[selector]
     correct_refr_cos = -N.sqrt(1 - (1./1.5)**2*(1 - correct_refl_cos**2))
     outg_cos = (outg.get_directions()*norm).sum(axis=0)
     N.testing.assert_array_equal(outg_cos, N.r_[correct_refl_cos, correct_refr_cos])
     
     N.testing.assert_array_equal(outg.get_energy().reshape(2,-1).sum(axis=0), \
         N.r_[100, 200, 400]) # reflection and refraction sum to 100%
     N.testing.assert_array_equal(outg.get_parents(), N.tile(selector, 2))
class TestFlatGeomTranslated(unittest.TestCase):
    def setUp(self):
        dir = N.c_[[1, 1, -1], [-1, 1, -1], [-1, -1, -1], [1, -1, -1]] / math.sqrt(3)
        position = N.c_[[0,0,1], [1,-1,1], [1,1,1], [-1,1,1]]
        self._bund = RayBundle(position, dir)
        
        self.gm = FlatGeometryManager()
        frame = SP.translate(1., 0., 0.)
        self.prm = self.gm.find_intersections(frame, self._bund)
        
    def test_find_intersections(self):
        """The correct parametric locations are found for translated flat geometry"""
        self.failUnlessEqual(self.prm.shape, (4,),
            "Shape of parametric location array is wrong: " + \
            str(self.prm.shape))
        N.testing.assert_array_almost_equal(self.prm, N.sqrt(3))
    
    def test_get_normals(self):
        """A translated flat geometry manager returns parallel normals"""
        self.gm.select_rays(N.arange(4))
        n = self.gm.get_normals()
        N.testing.assert_array_equal(n, N.tile(N.c_[[0, 0, 1]], (1,4)))
    
    def test_inters_points_global(self):
        """When translated, a flat surface returns correct intersections"""
        correct_pts = N.zeros((3,4))
        correct_pts[:2,0] = 1
        
        self.gm.select_rays(N.arange(4))
        pts = self.gm.get_intersection_points_global()
        N.testing.assert_array_equal(pts, correct_pts)
Exemple #3
0
class TestFlatGeomTranslated(unittest.TestCase):
    def setUp(self):
        dir = N.c_[[1, 1, -1], [-1, 1, -1], [-1, -1, -1],
                   [1, -1, -1]] / math.sqrt(3)
        position = N.c_[[0, 0, 1], [1, -1, 1], [1, 1, 1], [-1, 1, 1]]
        self._bund = RayBundle(position, dir)

        self.gm = FlatGeometryManager()
        frame = SP.translate(1., 0., 0.)
        self.prm = self.gm.find_intersections(frame, self._bund)

    def test_find_intersections(self):
        """The correct parametric locations are found for translated flat geometry"""
        self.failUnlessEqual(self.prm.shape, (4,),
            "Shape of parametric location array is wrong: " + \
            str(self.prm.shape))
        N.testing.assert_array_almost_equal(self.prm, N.sqrt(3))

    def test_get_normals(self):
        """A translated flat geometry manager returns parallel normals"""
        self.gm.select_rays(N.arange(4))
        n = self.gm.get_normals()
        N.testing.assert_array_equal(n, N.tile(N.c_[[0, 0, 1]], (1, 4)))

    def test_inters_points_global(self):
        """When translated, a flat surface returns correct intersections"""
        correct_pts = N.zeros((3, 4))
        correct_pts[:2, 0] = 1

        self.gm.select_rays(N.arange(4))
        pts = self.gm.get_intersection_points_global()
        N.testing.assert_array_equal(pts, correct_pts)
    def test_up_down(self):
        """Rays coming from below are absorbed, from above reflected"""
        going_down = N.c_[[1, 1, -1], [-1, 1, -1], [-1, -1, -1], [1, -1, -1]] / N.sqrt(3)
        going_up = going_down.copy()
        going_up[2] = 1 / N.sqrt(3)
        
        pos_up = N.c_[[0,0,1], [1,-1,1], [1,1,1], [-1,1,1]]
        pos_down = pos_up.copy()
        pos_down[2] = -1

        bund = RayBundle()
        bund.set_directions(N.hstack((going_down, going_up)))
        bund.set_vertices(N.hstack((pos_up, pos_down)))
        bund.set_energy(N.tile(100, 8))
        bund.set_ref_index(N.tile(1, 8))
        
        gm = FlatGeometryManager()
        prm = gm.find_intersections(N.eye(4), bund)
        absref = optics_callables.AbsorberReflector(0.)
        selector = N.arange(8)
        gm.select_rays(selector)
        outg = absref(gm, bund, selector)
        
        e = outg.get_energy()
        N.testing.assert_array_equal(e[:4], 100)
        N.testing.assert_array_equal(e[4:], 0)
Exemple #5
0
 def test_all_refracted(self):
     dir = N.c_[[1, 1, -1], [-1, 1, -1], [-1, -1, -1], [1, -1, -1]] / N.sqrt(3)
     position = N.c_[[0,0,1], [1,-1,1], [1,1,1], [-1,1,1]]
     en = N.r_[100, 200, 300, 400]
     bund = RayBundle(position, dir, energy=en, ref_index=N.ones(4))
     
     gm = FlatGeometryManager()
     prm = gm.find_intersections(N.eye(4), bund)
     refractive = optics_callables.RefractiveHomogenous(1,1.5)
     selector = N.array([0, 1, 3])
     gm.select_rays(selector)
     outg = refractive(gm, bund, selector)
     
     correct_pts = N.zeros((3,4))
     correct_pts[:2,0] = 1
     correct_pts = N.hstack((correct_pts[:,selector], correct_pts[:,selector]))
     N.testing.assert_array_equal(outg.get_vertices(), correct_pts)
     
     norm = N.c_[gm.get_normals()[:,0]]
     correct_refl_cos = -(dir*norm).sum(axis=0)[selector]
     correct_refr_cos = -N.sqrt(1 - (1./1.5)**2*(1 - correct_refl_cos**2))
     outg_cos = (outg.get_directions()*norm).sum(axis=0)
     N.testing.assert_array_equal(outg_cos, N.r_[correct_refl_cos, correct_refr_cos])
     
     N.testing.assert_array_equal(outg.get_energy().reshape(2,-1).sum(axis=0), \
         N.r_[100, 200, 400]) # reflection and refraction sum to 100%
     N.testing.assert_array_equal(outg.get_parents(), N.tile(selector, 2))
Exemple #6
0
    def test_up_down(self):
        """Rays coming from below are absorbed, from above reflected"""
        going_down = N.c_[[1, 1, -1], [-1, 1, -1], [-1, -1, -1], [1, -1, -1]] / N.sqrt(3)
        going_up = going_down.copy()
        going_up[2] = 1 / N.sqrt(3)
        
        pos_up = N.c_[[0,0,1], [1,-1,1], [1,1,1], [-1,1,1]]
        pos_down = pos_up.copy()
        pos_down[2] = -1

        bund = RayBundle()
        bund.set_directions(N.hstack((going_down, going_up)))
        bund.set_vertices(N.hstack((pos_up, pos_down)))
        bund.set_energy(N.tile(100, 8))
        bund.set_ref_index(N.tile(1, 8))
        
        gm = FlatGeometryManager()
        prm = gm.find_intersections(N.eye(4), bund)
        absref = optics_callables.AbsorberReflector(0.)
        selector = N.arange(8)
        gm.select_rays(selector)
        outg = absref(gm, bund, selector)
        
        e = outg.get_energy()
        N.testing.assert_array_equal(e[:4], 100)
        N.testing.assert_array_equal(e[4:], 0)
Exemple #7
0
class TestReflective(unittest.TestCase):
    def setUp(self):
        """Set up the ray bundle and geometry"""
        dir = N.c_[[1, 1, -1], [-1, 1, -1], [-1, -1, -1],
                   [1, -1, -1]] / N.sqrt(3)
        position = N.c_[[0, 0, 1], [1, -1, 1], [1, 1, 1], [-1, 1, 1]]
        en = N.r_[100, 200, 300, 400]
        self._bund = RayBundle(position, dir, energy=en)

        self.gm = FlatGeometryManager()
        self.prm = self.gm.find_intersections(N.eye(4), self._bund)

    def test_with_absorptivity(self):
        """A correct bundle is generated by reflective, with energy reduced correctly"""
        reflective = optics_callables.Reflective(0.1)
        self.gm.select_rays(N.arange(4))
        outg = reflective(self.gm, self._bund, N.arange(4))

        correct_pts = N.zeros((3, 4))
        correct_pts[:2, 0] = 1
        N.testing.assert_array_equal(outg.get_vertices(), correct_pts)

        correct_dirs = N.c_[[1, 1, 1], [-1, 1, 1], [-1, -1, 1],
                            [1, -1, 1]] / N.sqrt(3)
        N.testing.assert_array_equal(outg.get_directions(), correct_dirs)

        N.testing.assert_array_equal(outg.get_energy(), N.r_[90, 180, 270,
                                                             360])
        N.testing.assert_array_equal(outg.get_parents(), N.arange(4))

    def test_without_absorptivity(self):
        """Perfect mirroring works"""
        reflective = optics_callables.Reflective(0)
        self.gm.select_rays(N.arange(4))
        outg = reflective(self.gm, self._bund, N.arange(4))
        N.testing.assert_array_equal(outg.get_energy(), N.r_[100, 200, 300,
                                                             400])

    def test_receiver(self):
        """A receiver memorizes all lifetime hits"""
        receiver = optics_callables.ReflectiveReceiver()  # Perfect absorber
        self.gm.select_rays(N.arange(4))

        # Round one:
        outg = receiver(self.gm, self._bund, N.arange(4))
        N.testing.assert_array_equal(outg.get_energy(), 0)
        absorbed, hits = receiver.get_all_hits()
        N.testing.assert_array_equal(absorbed, N.r_[100, 200, 300, 400])
        correct_pts = N.zeros((3, 4))
        correct_pts[:2, 0] = 1
        N.testing.assert_array_equal(hits, correct_pts)

        # Round two:
        outg = receiver(self.gm, self._bund, N.arange(4))
        absorbed, hits = receiver.get_all_hits()
        N.testing.assert_array_equal(absorbed,
                                     N.tile(N.r_[100, 200, 300, 400], 2))
        N.testing.assert_array_equal(hits, N.tile(correct_pts, (1, 2)))
Exemple #8
0
class TestFlatGeomTilted(unittest.TestCase):
    """Use a flat surface rotated about the x axis by 45 degrees"""
    def setUp(self):
        s2 = math.sqrt(2)
        dir = N.c_[[1, 0, -s2], [-1, 0, -s2], [-1, -s2, 0],
                   [1, -s2, 0]] / math.sqrt(3)
        position = N.c_[[0, 1 / s2, 1 / s2], [1, 0, s2], [1, s2, 0],
                        [-1, s2, 0]]
        self._bund = RayBundle(position, dir)

        self.gm = FlatGeometryManager()
        frame = SP.generate_transform(N.r_[1., 0, 0], -N.pi / 4.,
                                      N.zeros((3, 1)))
        self.prm = self.gm.find_intersections(frame, self._bund)

    def test_find_intersections(self):
        """The correct parametric locations are found for flat geometry"""
        self.failUnlessEqual(self.prm.shape, (4,),
            "Shape of parametric location array is wrong: " + \
            str(self.prm.shape))
        N.testing.assert_array_almost_equal(self.prm, math.sqrt(3))

    def test_get_normals(self):
        """A tilted flat geometry manager returns parallel normals"""
        s2 = math.sqrt(2)
        self.gm.select_rays(N.arange(4))
        n = self.gm.get_normals()
        N.testing.assert_array_almost_equal(
            n, N.tile(N.c_[[0, 1 / s2, 1 / s2]], (1, 4)))

    def test_select_rays_normals(self):
        """A tilted flat geometry manager returns normals only for selected rays"""
        s2 = math.sqrt(2)
        self.gm.select_rays(N.r_[1, 3])
        n = self.gm.get_normals()
        N.testing.assert_array_almost_equal(
            n, N.tile(N.c_[[0, 1 / s2, 1 / s2]], (1, 2)))

    def test_inters_points_global(self):
        """On the basic setup, a tilted flat surface returns correct intersections"""
        correct_pts = N.zeros((3, 4))
        s2 = math.sqrt(2)
        correct_pts[:, 0] = N.r_[1, 1 / s2, -1 / s2]

        self.gm.select_rays(N.arange(4))
        pts = self.gm.get_intersection_points_global()
        N.testing.assert_array_almost_equal(pts, correct_pts)

    def test_select_rays_inters(self):
        """With dropped rays, a tilted flat surface returns correct intersections"""
        s2 = math.sqrt(2)
        correct_pts = N.zeros((3, 2))

        self.gm.select_rays(N.r_[1, 3])
        pts = self.gm.get_intersection_points_global()
        N.testing.assert_array_almost_equal(pts, correct_pts)
class TestReflective(unittest.TestCase):
    def setUp(self):
        """Set up the ray bundle and geometry"""
        dir = N.c_[[1, 1, -1], [-1, 1, -1], [-1, -1, -1], [1, -1, -1]] / N.sqrt(3)
        position = N.c_[[0,0,1], [1,-1,1], [1,1,1], [-1,1,1]]
        en = N.r_[100, 200, 300, 400]
        self._bund = RayBundle(position, dir, energy=en)
        
        self.gm = FlatGeometryManager()
        self.prm = self.gm.find_intersections(N.eye(4), self._bund)
    
    def test_with_absorptivity(self):
        """A correct bundle is generated by reflective, with energy reduced correctly"""
        reflective = optics_callables.Reflective(0.1)
        self.gm.select_rays(N.arange(4))
        outg = reflective(self.gm, self._bund, N.arange(4))
        
        correct_pts = N.zeros((3,4))
        correct_pts[:2,0] = 1
        N.testing.assert_array_equal(outg.get_vertices(), correct_pts)
        
        correct_dirs = N.c_[[1, 1, 1], [-1, 1, 1], [-1, -1, 1], [1, -1, 1]] / N.sqrt(3)
        N.testing.assert_array_equal(outg.get_directions(), correct_dirs)
        
        N.testing.assert_array_equal(outg.get_energy(), N.r_[90, 180, 270, 360])
        N.testing.assert_array_equal(outg.get_parents(), N.arange(4))
    
    def test_without_absorptivity(self):
        """Perfect mirroring works"""
        reflective = optics_callables.Reflective(0)
        self.gm.select_rays(N.arange(4))
        outg = reflective(self.gm, self._bund, N.arange(4))
        N.testing.assert_array_equal(outg.get_energy(), N.r_[100, 200, 300, 400])
    
    def test_receiver(self):
        """A receiver memorizes all lifetime hits"""
        receiver = optics_callables.ReflectiveReceiver() # Perfect absorber
        self.gm.select_rays(N.arange(4))
        
        # Round one:
        outg = receiver(self.gm, self._bund, N.arange(4))
        N.testing.assert_array_equal(outg.get_energy(), 0)
        absorbed, hits = receiver.get_all_hits()
        N.testing.assert_array_equal(absorbed, N.r_[100, 200, 300, 400])
        correct_pts = N.zeros((3,4))
        correct_pts[:2,0] = 1
        N.testing.assert_array_equal(hits, correct_pts)
        
        # Round two:
        outg = receiver(self.gm, self._bund, N.arange(4))
        absorbed, hits = receiver.get_all_hits()
        N.testing.assert_array_equal(absorbed, N.tile(N.r_[100, 200, 300, 400], 2))
        N.testing.assert_array_equal(hits, N.tile(correct_pts, (1,2)))
class TestFlatGeomTilted(unittest.TestCase):
    """Use a flat surface rotated about the x axis by 45 degrees"""
    def setUp(self):
        s2 = math.sqrt(2)
        dir = N.c_[[1, 0, -s2], [-1, 0, -s2], [-1, -s2, 0], [1, -s2, 0]] / math.sqrt(3)
        position = N.c_[[0,1/s2,1/s2], [1,0,s2], [1,s2,0], [-1,s2,0]]
        self._bund = RayBundle(position, dir)

        self.gm = FlatGeometryManager()
        frame = SP.generate_transform(N.r_[1., 0, 0], -N.pi/4., N.zeros((3,1)))
        self.prm = self.gm.find_intersections(frame, self._bund)
        
    def test_find_intersections(self):
        """The correct parametric locations are found for flat geometry"""
        self.failUnlessEqual(self.prm.shape, (4,), 
            "Shape of parametric location array is wrong: " + \
            str(self.prm.shape))
        N.testing.assert_array_almost_equal(self.prm, math.sqrt(3))
    
    def test_get_normals(self):
        """A tilted flat geometry manager returns parallel normals"""
        s2 = math.sqrt(2)
        self.gm.select_rays(N.arange(4))
        n = self.gm.get_normals()
        N.testing.assert_array_almost_equal(n, N.tile(N.c_[[0,1/s2,1/s2]], (1,4)))
        
    def test_select_rays_normals(self):
        """A tilted flat geometry manager returns normals only for selected rays"""
        s2 = math.sqrt(2)
        self.gm.select_rays(N.r_[1,3])
        n = self.gm.get_normals()
        N.testing.assert_array_almost_equal(n, N.tile(N.c_[[0,1/s2,1/s2]], (1,2)))
    
    def test_inters_points_global(self):
        """On the basic setup, a tilted flat surface returns correct intersections"""
        correct_pts = N.zeros((3,4))
        s2 = math.sqrt(2)
        correct_pts[:,0] = N.r_[1, 1/s2, -1/s2]
        
        self.gm.select_rays(N.arange(4))
        pts = self.gm.get_intersection_points_global()
        N.testing.assert_array_almost_equal(pts, correct_pts)
    
    def test_select_rays_inters(self):
        """With dropped rays, a tilted flat surface returns correct intersections"""
        s2 = math.sqrt(2)
        correct_pts = N.zeros((3,2))
        
        self.gm.select_rays(N.r_[1,3])
        pts = self.gm.get_intersection_points_global()
        N.testing.assert_array_almost_equal(pts, correct_pts)
class TestBacksideNormals(unittest.TestCase):
    def setUp(self):
        dir = N.c_[[1, 1, 1], [-1, 1, 1], [-1, -1, 1], [1, -1, 1]] / math.sqrt(3)
        position = N.c_[[0,0,-1], [1,-1,-1], [1,1,-1], [-1,1,-1]]
        self._bund = RayBundle(position, dir)

        self.gm = FlatGeometryManager()
        self.prm = self.gm.find_intersections(N.eye(4), self._bund)
    
    def test_get_normals(self):
        """A translated flat geometry manager returns parallel normals"""
        self.gm.select_rays(N.arange(4))
        n = self.gm.get_normals()
        N.testing.assert_array_equal(n, N.tile(N.c_[[0, 0, -1]], (1,4)))
Exemple #12
0
class TestBacksideNormals(unittest.TestCase):
    def setUp(self):
        dir = N.c_[[1, 1, 1], [-1, 1, 1], [-1, -1, 1],
                   [1, -1, 1]] / math.sqrt(3)
        position = N.c_[[0, 0, -1], [1, -1, -1], [1, 1, -1], [-1, 1, -1]]
        self._bund = RayBundle(position, dir)

        self.gm = FlatGeometryManager()
        self.prm = self.gm.find_intersections(N.eye(4), self._bund)

    def test_get_normals(self):
        """A translated flat geometry manager returns parallel normals"""
        self.gm.select_rays(N.arange(4))
        n = self.gm.get_normals()
        N.testing.assert_array_equal(n, N.tile(N.c_[[0, 0, -1]], (1, 4)))
 def test_TIR(self):
     dir = N.c_[[0, N.cos(N.pi/180), -N.sin(N.pi/180)]]
     position = N.c_[[0,0,1]]
     en = N.r_[100]
     bund = RayBundle(position, dir, energy=en, ref_index=N.r_[1.5])
     
     gm = FlatGeometryManager()
     prm = gm.find_intersections(N.eye(4), bund)
     refractive = optics_callables.RefractiveHomogenous(1.,1.5)
     selector = N.r_[0]
     gm.select_rays(selector)
     outg = refractive(gm, bund, selector)
     
     self.failUnlessEqual(outg.get_vertices().shape, (3,1))
     N.testing.assert_array_equal(outg.get_directions(), 
         N.c_[[0, N.cos(N.pi/180), N.sin(N.pi/180)]])
     N.testing.assert_array_equal(outg.get_energy(), N.r_[100])
     N.testing.assert_array_equal(outg.get_parents(), N.r_[0])
Exemple #14
0
 def test_TIR(self):
     dir = N.c_[[0, N.cos(N.pi/180), -N.sin(N.pi/180)]]
     position = N.c_[[0,0,1]]
     en = N.r_[100]
     bund = RayBundle(position, dir, energy=en, ref_index=N.r_[1.5])
     
     gm = FlatGeometryManager()
     prm = gm.find_intersections(N.eye(4), bund)
     refractive = optics_callables.RefractiveHomogenous(1.,1.5)
     selector = N.r_[0]
     gm.select_rays(selector)
     outg = refractive(gm, bund, selector)
     
     self.failUnlessEqual(outg.get_vertices().shape, (3,1))
     N.testing.assert_array_equal(outg.get_directions(), 
         N.c_[[0, N.cos(N.pi/180), N.sin(N.pi/180)]])
     N.testing.assert_array_equal(outg.get_energy(), N.r_[100])
     N.testing.assert_array_equal(outg.get_parents(), N.r_[0])
Exemple #15
0
class TestFlatGeomManagerInterface(unittest.TestCase):
    def setUp(self):
        dir = N.c_[[1, 1, -1], [-1, 1, -1], [-1, -1, -1],
                   [1, -1, -1]] / math.sqrt(3)
        position = N.c_[[0, 0, 1], [1, -1, 1], [1, 1, 1], [-1, 1, 1]]
        self._bund = RayBundle(position, dir)

        self.gm = FlatGeometryManager()
        self.prm = self.gm.find_intersections(N.eye(4), self._bund)

    def test_find_intersections(self):
        """The correct parametric locations are found for flat geometry"""
        self.failUnlessEqual(self.prm.shape, (4,),
            "Shape of parametric location array is wrong: " + \
            str(self.prm.shape))
        N.testing.assert_array_almost_equal(self.prm, N.sqrt(3))

    def test_get_normals(self):
        """A flat geometry manager returns parallel normals"""
        self.gm.select_rays(N.arange(4))
        n = self.gm.get_normals()
        N.testing.assert_array_equal(n, N.tile(N.c_[[0, 0, 1]], (1, 4)))

    def test_select_rays_normals(self):
        """Correct normals when some rays not selected"""
        self.gm.select_rays(N.r_[1, 3])
        n = self.gm.get_normals()
        N.testing.assert_array_equal(n, N.tile(N.c_[[0, 0, 1]], (1, 2)))

    def test_inters_points_global(self):
        """On the basic setup, a flat surface returns correct intersections"""
        correct_pts = N.zeros((3, 4))
        correct_pts[:2, 0] = 1

        self.gm.select_rays(N.arange(4))
        pts = self.gm.get_intersection_points_global()
        N.testing.assert_array_equal(pts, correct_pts)

    def select_rays_inters(self):
        """Correct intersections when some rays not selected"""
        correct_pts = N.zeros((3, 2))
        correct_pts[:2, 0] = 1
        pts = self.gm.get_intersection_points_global()
        N.testing.assert_array_equal(pts, correct_pts)
class TestFlatGeomManagerInterface(unittest.TestCase):
    def setUp(self):
        dir = N.c_[[1, 1, -1], [-1, 1, -1], [-1, -1, -1], [1, -1, -1]] / math.sqrt(3)
        position = N.c_[[0,0,1], [1,-1,1], [1,1,1], [-1,1,1]]
        self._bund = RayBundle(position, dir)

        self.gm = FlatGeometryManager()
        self.prm = self.gm.find_intersections(N.eye(4), self._bund)
        
    def test_find_intersections(self):
        """The correct parametric locations are found for flat geometry"""
        self.failUnlessEqual(self.prm.shape, (4,), 
            "Shape of parametric location array is wrong: " + \
            str(self.prm.shape))
        N.testing.assert_array_almost_equal(self.prm, N.sqrt(3))
    
    def test_get_normals(self):
        """A flat geometry manager returns parallel normals"""
        self.gm.select_rays(N.arange(4))
        n = self.gm.get_normals()
        N.testing.assert_array_equal(n, N.tile(N.c_[[0, 0, 1]], (1,4)))
        
    def test_select_rays_normals(self):
        """Correct normals when some rays not selected"""
        self.gm.select_rays(N.r_[1,3])
        n = self.gm.get_normals()
        N.testing.assert_array_equal(n, N.tile(N.c_[[0, 0, 1]], (1,2)))
    
    def test_inters_points_global(self):
        """On the basic setup, a flat surface returns correct intersections"""
        correct_pts = N.zeros((3,4))
        correct_pts[:2,0] = 1
        
        self.gm.select_rays(N.arange(4))
        pts = self.gm.get_intersection_points_global()
        N.testing.assert_array_equal(pts, correct_pts)
        
    def select_rays_inters(self):
        """Correct intersections when some rays not selected"""
        correct_pts = N.zeros((3,2))
        correct_pts[:2,0] = 1
        pts = self.gm.get_intersection_points_global()
        N.testing.assert_array_equal(pts, correct_pts)