Exemple #1
0
class SVMCLF(object):
    def __init__(self, fn_model, fn_params, nhistory=1):
        self.clf = pickle.load(open('model_svm.p', 'rb'))
        svmparams = pickle.load(open('svm_params.p', 'rb'))  #pickle.load(f2)
        self.fmean = svmparams['fmean']
        self.fstd = svmparams['fstd']
        self.tracker = Tracker(nhistory)

    def getFeatures(self, img):
        return [
            imagefunctions.num_corners(img),
            imagefunctions.num_edges(img),
            imagefunctions.num_red_pixels(img),
            imagefunctions.num_white_pixels(img),
            imagefunctions.abs_sobel_thresh(img,
                                            orient='y',
                                            sobel_kernel=3,
                                            thresh=(100, 200)),
            imagefunctions.mag_thresh(img,
                                      sobel_kernel=5,
                                      mag_thresh=(100, 180)),
            imagefunctions.dir_threshold(img,
                                         sobel_kernel=3,
                                         thresh=(np.pi / 8, np.pi / 4))
        ]

    def normalize_features(self, feature_vector, fmn, fsd):
        numDim = len(feature_vector)
        normFeatures = []
        normfeat = [None] * numDim
        for i in range(numDim):
            normfeat[i] = (feature_vector[i] - fmn[i]) / fsd[i]
        normFeatures.append(normfeat)
        #transpose result
        res = np.array(normFeatures).T
        return res

    def search_windows(self, img, windows, framenum=0):
        stop_windows = []  # list of positive stop sign detection windows
        warn_windows = []  # list of positive warn sign detection windows

        cropnum = 0
        for window in windows:
            # extract test window from orginal image
            #test_img = cv2.resize(img[window[0][1]:window[1][1], window[0][0]:window[1][0]], (50,50))
            img_crop = img[window[0][1]:window[1][1],
                           window[0][0]:window[1][0]]
            #img_crop_pp = imagefunctions.preprocess_one_rgb(img_crop)
            test_img = imagefunctions.preprocess_one_rgb(img_crop)
            #test_img = np.array(255*img_crop_pp, dtype=np.uint8)

            fname = 'crop-' + str(framenum) + '-' + str(cropnum) + '.png'
            #imsave('img50x50/'+fname, test_img)
            cropnum = cropnum + 1
            # extract features
            feat = self.getFeatures(test_img)
            # normalize features
            normfeat = self.normalize_features(feat, self.fmean, self.fstd)
            # predict using classifier
            testvec = np.asarray(normfeat).reshape(1, -1)
            prediction = self.clf.predict(testvec)
            #print prediction
            # save positive detection windows
            if prediction == 2:
                #print 'warning sign'
                warn_windows.append(window)
            elif prediction == 1:
                stop_windows.append(window)

        # return positve detection windows
        return stop_windows, warn_windows

    def draw_labeled_bboxes(self, img, labels, boxcolor):
        # Iterate through all detected cars
        for item_number in range(1, labels[1] + 1):
            # Find pixels with each item_number label value
            nonzero = (labels[0] == item_number).nonzero()
            # Identify x and y values of those pixels
            nonzeroy = np.array(nonzero[0])
            nonzerox = np.array(nonzero[1])
            bbox = ((np.min(nonzerox), np.min(nonzeroy)), (np.max(nonzerox),
                                                           np.max(nonzeroy)))
            # Draw the box on the image
            cv2.rectangle(img, bbox[0], bbox[1], boxcolor, 2)
        # Return the image
        return img

    def find_signs(self, img):
        startx = 0  #60
        stopx = imgsize[0] - windowsize[0]  #80
        starty = 0  #20 #19
        stopy = imgsize[1] - windowsize[1]  #30

        window_list = []
        for x in range(startx, stopx, slidestep[0]):
            for y in range(starty, stopy, slidestep[1]):
                img_crop = img[y:y + windowsize[1], x:x + windowsize[0]]
                img_crop_pp = imagefunctions.preprocess_one_rgb(img_crop)
                img_in = np.array(255 * img_crop_pp, dtype=np.uint8)
                if (imagefunctions.num_red_pixels(img_in) > min_red_pixels):
                    window_list.append(
                        ((x, y), (x + windowsize[0], y + windowsize[1])))

        stop_windows, warn_windows = self.search_windows(
            img, window_list, framenum=random.randint(0, 9999))

        # heatmap
        heat_stop = np.zeros_like(img[:, :, 0]).astype(np.float)
        heat_warn = np.zeros_like(img[:, :, 0]).astype(np.float)
        for bbox in window_list:
            startx = bbox[0][0]
            starty = bbox[0][1]
            endx = bbox[1][0]
            endy = bbox[1][1]
            #cv2.rectangle(img,(startx, starty),(endx, endy),(0,0,200),1)
        for bbox in warn_windows:
            startx = bbox[0][0]
            starty = bbox[0][1]
            endx = bbox[1][0]
            endy = bbox[1][1]
            heat_warn[starty:endy, startx:endx] += 1.
            #cv2.rectangle(img,(startx, starty),(endx, endy),(0,255,0),1)
        for bbox in stop_windows:
            startx = bbox[0][0]
            starty = bbox[0][1]
            endx = bbox[1][0]
            endy = bbox[1][1]
            heat_stop[starty:endy, startx:endx] += 1.
            #cv2.rectangle(img,(startx, starty),(endx, endy),(255,0,0),1)

        score_stop = np.max(heat_stop)
        score_warn = np.max(heat_warn)
        #print '[scores] stop:' + str(score_stop) + ' warn:' + str(score_warn)

        detthresh = 20
        mapthresh = 10
        labels = [None]
        if score_stop < detthresh and score_warn < detthresh:
            #print 'NO SIGN'
            decision = 0
            draw_img = img
        elif score_stop > score_warn:
            #print 'STOP'
            decision = 1
            heatmap_stop = heat_stop
            heatmap_stop[heatmap_stop <= mapthresh] = 0
            labels = label(heatmap_stop)
            #draw_img = draw_labeled_bboxes(np.copy(img), labels_stop, boxcolor=(255,0,0))
        else:
            #print 'WARNING'
            decision = 2
            # draw box
            heatmap_warn = heat_warn
            heatmap_warn[heatmap_warn <= mapthresh] = 0
            labels = label(heatmap_warn)
            #draw_img = draw_labeled_bboxes(np.copy(img), labels_warn, boxcolor=(0,255,0))

        #Image.fromarray(draw_img).show()
        return decision, labels  #draw_img

    def processOneFrame(self, img):
        dec, labels = self.find_signs(img)
        self.tracker.new_data(dec)
        final_decision = self.tracker.combined_results()
        #print dec, final_decision
        draw_img = img
        if len(labels) == 2:
            if final_decision == 1:
                draw_img = self.draw_labeled_bboxes(np.copy(img),
                                                    labels,
                                                    boxcolor=(255, 0, 0))
            elif final_decision == 2:
                draw_img = self.draw_labeled_bboxes(np.copy(img),
                                                    labels,
                                                    boxcolor=(0, 255, 0))
            else:
                draw_img = img
        return final_decision, draw_img
Exemple #2
0
class SVMCLF(object):
    def __init__(self, fn_model, fn_params, nhistory=1):

        # Trained SVM model
        fn_model = 'model_svm.p'
        fn_params = 'svm_params.p'
        self.clf = pickle.load(open(fn_model, 'rb'))
        svmparams = pickle.load(open(fn_params, 'rb'))  #pickle.load(f2)
        self.fmean = svmparams['fmean']
        self.fstd = svmparams['fstd']

        # Settings
        self.nhistory = 1  # tracker buffer
        self.dt = 0.1  # update interval

        ############################################################################
        # TO-DO: adjust thresholds
        ############################################################################
        self.K_detthresh_stop = 0.1  #0.05 # detection threshold (factor of window count)
        self.K_detthresh_warn = 2.5  # detection threshold (factor of window count)
        self.K_mapthresh = 0.08  # discard threshold (factor of window count)
        #self.K_stopbias = 0.4 # bias to favor STOP over WARN (factor of window count)

        # tracker
        self.tracker = Tracker(self.nhistory)

    def getFeatures(self, img):
        ############################################################################
        # TO-DO: use the same feature vector that was used for training
        ############################################################################
        return get_features(img)
        out = img[:, :2, :].ravel()
        return out
        return [
            imagefunctions.num_red_pixels(img),
            imagefunctions.num_white_pixels(img),
            imagefunctions.num_edges(img),
            imagefunctions.num_corners(img)
        ]

    def normalize_features(self, feature_vector, fmn, fsd):
        numDim = len(feature_vector)
        normFeatures = []
        normfeat = [None] * numDim
        for i in range(numDim):
            normfeat[i] = (feature_vector[i] - fmn[i]) / fsd[i]
        normFeatures.append(normfeat)
        #transpose result
        res = np.array(normFeatures).T
        return res

    def draw_labeled_bboxes(self, img, labels, boxcolor):
        # Iterate through all detected cars
        for item_number in range(1, labels[1] + 1):
            # Find pixels with each item_number label value
            nonzero = (labels[0] == item_number).nonzero()
            # Identify x and y values of those pixels
            nonzeroy = np.array(nonzero[0])
            nonzerox = np.array(nonzero[1])
            bbox = ((np.min(nonzerox), np.min(nonzeroy)), (np.max(nonzerox),
                                                           np.max(nonzeroy)))
            # Draw the box on the image
            cv2.rectangle(img, bbox[0], bbox[1], boxcolor, 2)
        # Return the image
        return img

    def search_windows(self, img, windows, framenum=0):
        # preprocess frame
        img_prep = imagefunctions.preprocess_one_rgb(img[0:127][:])
        fvec = []
        for window in windows:
            # extract test window from image
            test_img = img_prep[window[0][1]:window[1][1],
                                window[0][0]:window[1][0]]
            # extract features
            feat = self.getFeatures(test_img)
            # normalize features
            normfeat = self.normalize_features(feat, self.fmean, self.fstd)
            # assemble batch
            testvec = np.asarray(normfeat).reshape(1, -1)
            fvec.append(testvec)

        # batch prediction
        if (np.array(fvec).ndim == 3):
            rvec = self.clf.predict(np.array(fvec).squeeze(axis=1))
        else:
            rvec = []

        # list of positive stop sign detection windows
        stop_indices = [i for i, x in enumerate(rvec) if x == 1]
        stop_windows = [windows[i] for i in stop_indices]

        # list of positive warn sign detection windows
        warn_indices = [i for i, x in enumerate(rvec) if x == 2]
        warn_windows = [windows[i] for i in warn_indices]

        # return positve detection windows
        return stop_windows, warn_windows

    def find_signs(self, img):
        startx = 0  #60
        stopx = imgsize[0] - windowsize[0]  #80
        starty = 0  #20 #19
        stopy = imgsize[1] - windowsize[1]  #30

        window_list = []
        for x in range(startx, stopx, slidestep[0]):
            for y in range(starty, stopy, slidestep[1]):
                img_in = img[y:y + windowsize[1], x:x + windowsize[0]]
                #img_crop_pp = imagefunctions.preprocess_one_rgb(img_crop)
                #img_in = np.array(255*img_crop_pp, dtype=np.uint8)
                if (imagefunctions.num_red_pixels(img_in) > min_red_pixels):
                    window_list.append(
                        ((x, y), (x + windowsize[0], y + windowsize[1])))

        #stop_windows, warn_windows = self.search_windows(img, window_list, framenum=random.randint(0,9999))
        stop_windows, warn_windows = self.search_windows(img, window_list)

        # if no window to search
        numwin = len(window_list)
        if (numwin == 0):
            decision = 0
            labels = [None]
            return decision, labels, img

        # Method 1 - Count windows


#        if ((len(stop_windows)<2) and (len(warn_windows)<2)):
#            return 0,[None]
#        elif (len(stop_windows)>=len(warn_windows)):
#            return 1,[None]
#        else:
#            return 2,[None]

# Method 2 - Localized heatmap based decision
        heat_stop = np.zeros_like(img[:, :, 0]).astype(np.float)
        heat_warn = np.zeros_like(img[:, :, 0]).astype(np.float)
        for bbox in window_list:
            startx = bbox[0][0]
            starty = bbox[0][1]
            endx = bbox[1][0]
            endy = bbox[1][1]
            #cv2.rectangle(img,(startx, starty),(endx, endy),(200,0,0),1)
        for bbox in warn_windows:
            startx = bbox[0][0]
            starty = bbox[0][1]
            endx = bbox[1][0]
            endy = bbox[1][1]
            heat_warn[starty:endy, startx:endx] += 1.
            cv2.rectangle(img, (startx, starty), (endx, endy), (0, 255, 0), 1)
        for bbox in stop_windows:
            startx = bbox[0][0]
            starty = bbox[0][1]
            endx = bbox[1][0]
            endy = bbox[1][1]
            heat_stop[starty:endy, startx:endx] += 1.
            cv2.rectangle(img, (startx, starty), (endx, endy), (255, 0, 0), 1)

        score_stop = np.max(heat_stop)
        score_warn = np.max(heat_warn)

        # ---- GET DECISION ---- #
        decision = self.get_decision(score_stop, score_warn, numwin)

        # plot final decision region
        mapthresh = self.K_mapthresh * numwin
        labels = [None]
        if (decision == 1):
            heatmap_stop = heat_stop
            heatmap_stop[heatmap_stop <= mapthresh] = 0
            labels = label(heatmap_stop)
        elif (decision == 2):
            heatmap_warn = heat_warn
            heatmap_warn[heatmap_warn <= mapthresh] = 0
            labels = label(heatmap_warn)

        return decision, labels, img

    def get_decision(self, score_stop, score_warn, numwin):
        # decision thresholds and biases
        detthresh_stop = self.K_detthresh_stop * numwin
        detthresh_warn = self.K_detthresh_warn * numwin

        ############################################################################
        # TO-DO: design a decision maker
        ############################################################################
        # Make Decision
        if (score_stop >=
                detthresh_stop):  # and (score_stop + stopbias > score_warn):
            decision = 1
        elif (score_warn >= detthresh_warn):
            decision = 2
        else:
            decision = 0

        return decision

    def processOneFrame(self, img):
        # get decision for current frame
        dec, labels, draw_img = self.find_signs(img)
        # combine with previous results (if applicable)
        self.tracker.new_data(dec)
        final_decision = self.tracker.combined_results()
        # return results and output image
        #if dec:
        #    return final_decision, np.dstack([labels[0]*255]*3).astype('uint8')
        return final_decision, draw_img
Exemple #3
0
class SVMCLF():
    def __init__(self):

        # ROS nodes
        rospy.init_node('classifier', anonymous=True)
        rospy.Subscriber("camera/image", Image, self.callback, queue_size=1)
        self.pub = rospy.Publisher('driver_node/drivestate',
                                   Int8,
                                   queue_size=1)
        self.imgsvm_pub = rospy.Publisher('camera/imgsvm', Image, queue_size=1)

        # Trained SVM model
        fn_model = rospy.get_param('~svmModelFile')
        fn_params = rospy.get_param('~svmParamsFile')
        self.clf = pickle.load(open(fn_model, 'rb'))
        svmparams = pickle.load(open(fn_params, 'rb'))  #pickle.load(f2)
        self.fmean = svmparams['fmean']
        self.fstd = svmparams['fstd']

        # Settings
        self.nhistory = 1  # tracker buffer
        self.dt = 0.1  # update interval
        self.K_detthresh_stop = 0.05  # detection threshold (factor of window count)
        self.K_detthresh_warn = 0.24  # detection threshold (factor of window count)
        self.K_mapthresh = 0.08  # discard threshold (factor of window count)
        self.K_stopbias = 0.4  # bias to favor STOP over WARN (factor of window count)

        # Updates
        self.drive_state = 0
        self.img = [None]
        self.lastimgtime = -1

        # tracker
        self.tracker = Tracker(self.nhistory)

        # start
        self.loop()

    def callback(self, rosimg):
        self.img = CvBridge().imgmsg_to_cv2(rosimg)
        self.lastimgtime = rosimg.header.stamp.secs

    def loop(self):
        rate = rospy.Rate(1 / self.dt)
        lastupdate = -1
        while not rospy.is_shutdown():
            if (self.lastimgtime != lastupdate):
                start_time = time.time()
                # ---- process frame ---
                rosimg = self.img  # copy to local memory before processing
                dec, draw_img = self.processOneFrame(rosimg)
                lastupdate = self.lastimgtime
                # Publish results
                print "State=" + str(dec) + " (" + str(time.time() -
                                                       start_time) + "s)"
                self.drive_state = dec
                self.pub.publish(self.drive_state)
                # Optional - Publish image for monitoring
                self.imgsvm_pub.publish(CvBridge().cv2_to_imgmsg(
                    draw_img, "bgr8"))

        rate.sleep()

    def getFeatures(self, img):
        return [
            imagefunctions.num_corners(img),
            imagefunctions.num_edges(img),
            imagefunctions.num_red_pixels(img),
            imagefunctions.num_white_pixels(img),
            imagefunctions.abs_sobel_thresh(img,
                                            orient='y',
                                            sobel_kernel=3,
                                            thresh=(100, 200)),
            imagefunctions.mag_thresh(img,
                                      sobel_kernel=5,
                                      mag_thresh=(100, 180)),
            imagefunctions.dir_threshold(img,
                                         sobel_kernel=3,
                                         thresh=(np.pi / 8, np.pi / 4))
        ]

    def normalize_features(self, feature_vector, fmn, fsd):
        numDim = len(feature_vector)
        normFeatures = []
        normfeat = [None] * numDim
        for i in range(numDim):
            normfeat[i] = (feature_vector[i] - fmn[i]) / fsd[i]
        normFeatures.append(normfeat)
        #transpose result
        res = np.array(normFeatures).T
        return res

    def draw_labeled_bboxes(self, img, labels, boxcolor):
        # Iterate through all detected cars
        for item_number in range(1, labels[1] + 1):
            # Find pixels with each item_number label value
            nonzero = (labels[0] == item_number).nonzero()
            # Identify x and y values of those pixels
            nonzeroy = np.array(nonzero[0])
            nonzerox = np.array(nonzero[1])
            bbox = ((np.min(nonzerox), np.min(nonzeroy)), (np.max(nonzerox),
                                                           np.max(nonzeroy)))
            # Draw the box on the image
            cv2.rectangle(img, bbox[0], bbox[1], boxcolor, 2)
        # Return the image
        return img

    def search_windows(self, img, windows, framenum=0):
        # preprocess frame
        img_prep = imagefunctions.preprocess_one_rgb(img[0:127][:])
        fvec = []
        for window in windows:
            # extract test window from image
            test_img = img_prep[window[0][1]:window[1][1],
                                window[0][0]:window[1][0]]
            # extract features
            feat = self.getFeatures(test_img)
            # normalize features
            normfeat = self.normalize_features(feat, self.fmean, self.fstd)
            # assemble batch
            testvec = np.asarray(normfeat).reshape(1, -1)
            fvec.append(testvec)

        # batch prediction
        if (np.array(fvec).ndim == 3):
            rvec = self.clf.predict(np.array(fvec).squeeze(axis=1))
        else:
            rvec = []

        # list of positive stop sign detection windows
        stop_indices = [i for i, x in enumerate(rvec) if x == 1]
        stop_windows = [windows[i] for i in stop_indices]

        # list of positive warn sign detection windows
        warn_indices = [i for i, x in enumerate(rvec) if x == 2]
        warn_windows = [windows[i] for i in warn_indices]

        # return positve detection windows
        return stop_windows, warn_windows

    def find_signs(self, img):
        startx = 10
        stopx = 68  #imgsize[0]-windowsize[0] #80
        starty = 0  #20 #19
        stopy = imgsize[1] - windowsize[1]  #30

        window_list = []
        for x in range(startx, stopx, slidestep[0]):
            for y in range(starty, stopy, slidestep[1]):
                img_in = img[y:y + windowsize[1], x:x + windowsize[0]]
                #img_crop_pp = imagefunctions.preprocess_one_rgb(img_crop)
                #img_in = np.array(255*img_crop_pp, dtype=np.uint8)
                if (imagefunctions.num_red_pixels(img_in) > min_red_pixels):
                    window_list.append(
                        ((x, y), (x + windowsize[0], y + windowsize[1])))

        #stop_windows, warn_windows = self.search_windows(img, window_list, framenum=random.randint(0,9999))
        stop_windows, warn_windows = self.search_windows(img, window_list)

        # if no window to search
        numwin = len(window_list)
        if (numwin == 0):
            decision = 0
            labels = [None]
            return decision, labels, img

        # Method 1 - Count windows


#        if ((len(stop_windows)<2) and (len(warn_windows)<2)):
#            return 0,[None]
#        elif (len(stop_windows)>=len(warn_windows)):
#            return 1,[None]
#        else:
#            return 2,[None]

# Method 2 - Localized heatmap based decision
        heat_stop = np.zeros_like(img[:, :, 0]).astype(np.float)
        heat_warn = np.zeros_like(img[:, :, 0]).astype(np.float)
        for bbox in window_list:
            startx = bbox[0][0]
            starty = bbox[0][1]
            endx = bbox[1][0]
            endy = bbox[1][1]
            cv2.rectangle(img, (startx, starty), (endx, endy), (200, 0, 0), 1)
        for bbox in warn_windows:
            startx = bbox[0][0]
            starty = bbox[0][1]
            endx = bbox[1][0]
            endy = bbox[1][1]
            heat_warn[starty:endy, startx:endx] += 1.
            cv2.rectangle(img, (startx, starty), (endx, endy), (0, 255, 0), 1)
        for bbox in stop_windows:
            startx = bbox[0][0]
            starty = bbox[0][1]
            endx = bbox[1][0]
            endy = bbox[1][1]
            heat_stop[starty:endy, startx:endx] += 1.
            cv2.rectangle(img, (startx, starty), (endx, endy), (0, 0, 255), 1)

        score_stop = np.max(heat_stop)
        score_warn = np.max(heat_warn)
        print '[scores] stop:' + str(score_stop) + ' warn:' + str(score_warn)

        # ---- GET DECISION ---- #
        decision = self.get_decision(score_stop, score_warn, numwin)

        # plot final decision region
        mapthresh = self.K_mapthresh * numwin
        labels = [None]
        if (decision == 1):
            heatmap_stop = heat_stop
            heatmap_stop[heatmap_stop <= mapthresh] = 0
            labels = label(heatmap_stop)
        elif (decision == 2):
            heatmap_warn = heat_warn
            heatmap_warn[heatmap_warn <= mapthresh] = 0
            labels = label(heatmap_warn)

        return decision, labels, img

    def get_decision(self, score_stop, score_warn, numwin):
        # decision thresholds and biases
        detthresh_stop = self.K_detthresh_stop * numwin
        detthresh_warn = self.K_detthresh_warn * numwin
        #stopbias = self.K_stopbias * numwin
        print 'numwin = ' + str(numwin) + ', detthreshSTOP = ' + str(
            detthresh_stop) + ', detthreshWARN = ' + str(detthresh_warn)

        # Make Decision
        if (score_stop >=
                detthresh_stop):  # and (score_stop + stopbias > score_warn):
            decision = 1
        elif (score_warn >= detthresh_warn):
            decision = 2
        else:
            decision = 0

        return decision

    def processOneFrame(self, img):
        # get decision for current frame
        dec, labels, draw_img = self.find_signs(img)
        # combine with previous results (if applicable)
        self.tracker.new_data(dec)
        final_decision = self.tracker.combined_results()
        # return results and output image
        return final_decision, draw_img