def test_signup_and_login(self): username = self._random_str() password = self._random_str() api = TrackerMLAPI(username, password, base_url=self.BASE_URL) api.create_user() api.ensure_token() self.assertTrue(bool(api._token)) self.assertGreater(api._expiration, 0) with self.assertRaises(HTTPError): api.create_user()
class __TMLRun: """ A Run is a single execution of a ml model train """ def __init__(self): self.__trials_dir = fo.get_trials_dir() self.__id = max([int(f) for f in os.listdir(self.__trials_dir)], default=0) + 1 self.__curr_dir = os.path.join(self.__trials_dir, str(self.__id)) self.__meta = collections.OrderedDict() self.__meta["id"] = self.__id self.__api = None self.__model_name = "" atexit.register(self.__save) def login(self, username: str, password: str): self.__api = TrackerMLAPI(username, password) self.__api.ensure_token() def model(self, model_name: str): self.__model_name = model_name def record(self, key: str, value): if key in self.__meta: raise ValueError("{} already recorded".format(key)) if isinstance(value, str) or isinstance(value, int) or isinstance(value, float): self.__meta[key] = value else: raise TypeError("Value must be of type str, int, or float") def mrecord(self, key: str, value): if key not in self.__meta: self.__meta[key] = [] elif not isinstance(self.__meta[key], list): raise TypeError("Key was already used to record a single value") if isinstance(value, str) or isinstance(value, int) or isinstance(value, float): self.__meta[key].append(value) else: raise TypeError("Value must be of type str, int, or float") def __save(self): os.makedirs(self.__curr_dir) for file, md5 in fo.get_meta()["files"].items(): copyfile(file, os.path.join(self.__curr_dir, md5)) with open(os.path.join(self.__curr_dir, "meta.json"), "w+") as fp: json.dump(self.__meta, fp, indent=2) config = fo.get_config() meta = fo.get_meta() meta["current_trial"] = self.__id try: if self.__model_name and self.__api: meta["model_name"] = self.__model_name project_id = config["project_id"] if self.__model_name in meta["models"]: model_id = meta["models"][self.__model_name] else: model_id = self.__api.post_model(self.__model_name, project_id) meta["models"][self.__model_name] = model_id self.__api.post_run(project_id, model_id, meta) except Exception as e: logging.exception("Problem using tracker.ml API") finally: fo.set_meta(meta)